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This Lecture: Part |l

Outline

@ Kernels on structured objects
e Multiple kernel learning (MKL)
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Motivation

Structured data ubiquituous in applied sciences:

@ Bioinformatics
e.g., DNA sequences and metabolic networks

o Natural language processing
e.g., text documents and parse trees

o Computer security
Network traffic and program behavior

@ Cheminformatics
molecule structures
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Motivation

Structured data ubiquitous in applied sciences:

@ Bioinformatics
e.g., DNA sequences (strings) and metabolic networks (graphs)

o Natural language processing
e.g., text documents (strings) and parse trees (trees)

o Computer security
Network traffic and program behavior (strings, trees)

o Cheminformatics
molecule structures (graphs)

Data can be modeled by disrete structures such as strings, trees, and
graphs.
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Motivation

Structured data ubiquitous in applied sciences:

@ Bioinformatics
e.g., DNA sequences (strings) and metabolic networks (graphs)

o Natural language processing
e.g., text documents (strings) and parse trees (trees)

o Computer security
Network traffic and program behavior (strings, trees)

@ Cheminformatics
molecule structures (graphs)

Data can be modeled by disrete structures such as strings, trees, and
graphs.

Structured data # vectors = No machine learning possible?
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Example of a String Kernel: Bag-of-Words Kernel

@ Bag-of-words: characterization of strings using non-overlapping
substrings (“words")

X :‘ mary had a little lamb ‘ \(

‘ mary H had H a ”UttleH lamb ‘

o Definition: Let L be a language over an alphabet ¥ and let D C L
be a set of delimiters. The bag-of-words kernel is defined by

Vx,x' € ¥ k(x,X') = Z (%) - 1y (X')
wel\D
where | denotes the indicator function, i.e., I,(x) =1if wis a
substring of x, and /,,(x) = 0 otherwise.
@ The BOW “kernel” is, indeed, a PDS kernel because
k(x,x") = (®(x), d(x")) where
Y+ — RINDI
X (IW(X))WEL\D '
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Example of a Tree Kernel: The Parse-Tree Kernel

o A tree x = (V,E,v*)is an acyclic graph (V, E) rooted at v* € V.

@ A parse tree is a tree x derived from a grammar, such that each node
v € V is associated with a production rule p(v).

o Example: parse tree for “mary ate lamb"” has production rules
» pp:A—>B
> po: B — “mary”“ate’ C
» p3: C— “lamb”
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Example of a Tree Kernel: The Parse-Tree Kernel

@ Parse trees are common data structure in several application domains,
e.g., natural language processing, compiler design, ...

@ Characterization of parse trees using contained subtrees

subtrees

@ Definition: similar to the bag-of-words kernel, define the parse-tree
kernel by

k(. x') =) h(x) (x') .

teT

Here: T = “set of all possible parse trees”, and /;(x) returns the
occurrence of subtree t in x
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Motivation

@ Several important applications of ML come with multiple views of the
data

@ For example, in image analysis, an image can be described, in terms
of, e.g.:

v

pixel colors

» shapes (gradients)

local features

v

v

spatial tilings

@ Each view gives rise to one or multiple kernels.
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Recap: Support Vector Machine

o Constrained, convex optimization problem:

R &
min 5wl + C;&
subject to yi(w-®(x;))+b)>1—-& A & >0, i€[l,m]

wex+b=—1
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Multiple Kernel Learning

o Let Ki,...,Ky: X x X = R be PDS kernels, associated with
respective feature maps ®; : X — Hj, j € [1, d]

o Consider “weighted” Cartesian product feature space
by := O1P1 X -+ X \/OyDy where 01,...,04 > 0 are weights
» corresponds to weighted kernel Kg := 601Ky + - - + 04Ky
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Multiple Kernel Learning

o Let K1,..., Ky : X x X = R be PDS kernels, associated with
respective feature maps ®; : X — Hj, j € [1, d]

o Consider “weighted” Cartesian product feature space
by := O1P1 X -+ X \/OyDy where 01,...,04 > 0 are weights
» corresponds to weighted kernel Kg := 601Ky + - - + 04Ky

@ SVM optimization problem:

I =
min 3 [wllg; + C;fi
=
subject to yi(w-®Pg(xj)+b)>1—-& A & >0, i€[l,m]
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Multiple Kernel Learning

o Let Ki,...,Ky: X x X — R be PDS kernels, associated with
respective feature maps ®; : X — Hj, j € [1, d]

@ Consider "weighted” Cartesian product feature space
Pg = /01P1 X -+ X /0Py where 01,...,04 > 0 are weights
» corresponds to weighted kernel Ky := 01Ky + -+ - + 04Ky

@ SVM optimization problem:
m

Iwlz  +C> ¢

PR i=1
sl
subject to yi( w-®p(x;)) +b)>1—-& A >0, i€l m

N——
=200/ Owy

where w = (w; ... w})"

N

min
w,b,¢
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Multiple Kernel Learning

o Let Ki,...,Ky: X x X — R be PDS kernels, associated with
respective feature maps ®; : X — Hj, j € [1, d]

@ Consider "weighted” Cartesian product feature space
Pg = /01P1 X -+ X /0Py where 01,...,04 > 0 are weights
» corresponds to weighted kernel Ky := 01Ky + -+ - + 04Ky

@ SVM optimization problem:
m
Iwlg  +C> &
ST

subject to yi( w-Pg(x;)) +b)>1—-& A & >0, i€[l,m]
—_———

N

min
w,b,¢

=200/ Owy
where w = (w; ... w})"
@ How to compute a “good” weight vector 0 = (01,...,04)7
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Multiple Kernel Learning (MKL)

o MKL optimization problem:

C
w,b.£,0:020(6] <1 QZ” JHH + ZE:

i=1
d

subject to y,(waJ i(xi +b>21—f,- AN &>0

@ Core idea:

» Optimize over the kernel weights 61,...,04
> Restrict ||@|| to avoid overfitting

* In the following [0 = /6], <" (2, 6;/7)# (“¢,-norm”)

Mehryar Mohri (presented today by Marius KFoundations of Machine Learning Lecture 5: March 25, 2013 15 / 17



Multiple Kernel Learning (MKL)

o MKL optimization problem:

C
w,b.£,0:020(6] <1 QZ” JHH + ZE:

i=1
d

subject to y,(waJ i(xi +b>21—§,~ AN &>0

@ Core idea:

» Optimize over the kernel weights 61,...,04
> Restrict ||@|| to avoid overfitting

* In the following [0 = /6], <" (2, 6;/7)# (“¢,-norm”)

@ Problem: OP is not convex because of the mixed products /0;w;
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Multiple Kernel Learning (MKL)
@ Change of variables: w

new

= Twee

[m]

&
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Multiple Kernel Learning (MKL)

o Change of variables: wi®" := \/_wOId

= Equivalent MKL optimization problem:

||WJ||]HI
i + C
w,b.€,0: 0>0||9H <1 2 Z §i

d
subject to y, (ij ®;(x; +b)>1—§, N & >0, 0i€e[l,m]
j=1

=w-d(x;)
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Multiple Kernel Learning (MKL)

o Change of variables: wj®" := fwo'd

= Equivalent MKL optimization problem:

d
1w JII
min - 5 CE &
w,b,£,0:0>0|6], <1 2j:

QH

subject to vy, (ZWJ D (xi +b>>1—§, A & >0, 0i€[l,m]

=w-d(x;)

e Convex problem: because any function (x,y) —
semi-definite M is convex for y > 0

e Convention: 0/0 := 0 and x/0 := oo for x # 0

x";’x with positive
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Rademacher Complexity of MKL

Theorem

Let Ki,...,Kq: X x X = R be PDS kernels with associated feature mappings ®; : X — Hj,
Jj€[1,d]. Let S C {x: Kj(x,x) < R?,j € [1,d]} be a sample of size m, put q :=2p/(p+ 1)
and g* :=q/(q — 1), and let H = {x — w - ®(x) : 27:1 ||Wj||]?.]1,/0j <A%2,0>0, lel, <1t
J
Then, _ A c P
Rs(H) < —\/c I(Tr(Ky), ..., Tr(Kg))|l g« < 1/—/\Rd1/q , c:=max(1,q" —1).
m 2 m

Proof.

2
First note that, ming>o,|6||,<1 Zle % = |(a1,---, ad)Hi with g = 2p/(p + 1) for any

a1, 2g € R. Thus, denoting [[wll, o = || (w1 |, ,...,dean)Hq,
= 1 Z 1 =
Rs(H) = —E [ sup w - Za,-‘:b(x,-)] =—E { sup  w- ZO’,"D(X,’)]
LS il < = m Ll g <A i
9>0,]6]],<1
()

< % E |:H Xm:m'(b(xi) ’2 q*:| (*ﬁ*) % (Xd:cEr H Xm:ai¢j(xi)H:;)l/q*
i=1 ’ j=1" =1 ’

DS (Seai) )T = AV TR, TR

j=1 =1
where (), (xx), and (% * ), is by Holder’s, Jensen'’s, and Khintchine/Kahane's inequality. O
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