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Motivation

Structured data ubiquituous in applied sciences:

Bioinformatics
e.g., DNA sequences and metabolic networks

Natural language processing
e.g., text documents and parse trees

Computer security
Network traffic and program behavior

Cheminformatics
molecule structures
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Structured data ubiquitous in applied sciences:

Bioinformatics
e.g., DNA sequences (strings) and metabolic networks (graphs)

Natural language processing
e.g., text documents (strings) and parse trees (trees)

Computer security
Network traffic and program behavior (strings, trees)

Cheminformatics
molecule structures (graphs)

Data can be modeled by disrete structures such as strings, trees, and
graphs.

Structured data 6= vectors ⇒ No machine learning possible?
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Example of a String Kernel: Bag-of-Words Kernel
Bag-of-words: characterization of strings using non-overlapping
substrings (“words”)

Definition: Let L be a language over an alphabet Σ and let D ⊂ L
be a set of delimiters. The bag-of-words kernel is defined by

∀x , x ′ ∈ Σ∗ : k(x , x ′) =
∑

w∈L\D

Iw (x) · Iw (x ′) ,

where I denotes the indicator function, i.e., Iw (x) = 1 if w is a
substring of x , and Iw (x) = 0 otherwise.

The BOW “kernel” is, indeed, a PDS kernel because
k(x , x ′) = 〈Φ(x),Φ(x ′)〉 where

Φ :
Σ∗ → R|L\D|
x 7→

(
Iw (x)

)
w∈L\D

.
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Example of a Tree Kernel: The Parse-Tree Kernel

A tree x = (V ,E , v∗) is an acyclic graph (V ,E ) rooted at v∗ ∈ V .

A parse tree is a tree x derived from a grammar, such that each node
v ∈ V is associated with a production rule p(v).

Example: parse tree for “mary ate lamb” has production rules
I p1 : A→ B
I p2 : B → “mary ′′“ate′′C
I p3 : C → “lamb′′
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Example of a Tree Kernel: The Parse-Tree Kernel

Parse trees are common data structure in several application domains,
e.g., natural language processing, compiler design, ...

Characterization of parse trees using contained subtrees

Definition: similar to the bag-of-words kernel, define the parse-tree
kernel by

k(x , x ′) =
∑
t∈T

It(x) It(x
′) .

Here: T = “set of all possible parse trees”, and It(x) returns the
occurrence of subtree t in x
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Motivation

Several important applications of ML come with multiple views of the
data

For example, in image analysis, an image can be described, in terms
of, e.g.:

I pixel colors

I shapes (gradients)

I local features

I spatial tilings

Each view gives rise to one or multiple kernels.
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Recap: Support Vector Machine

Constrained, convex optimization problem:

min
w,b,ξ

1

2
‖w‖2

H + C
m∑
i=1

ξi

subject to yi (w · Φ(xi ) + b) ≥ 1− ξi ∧ ξi ≥ 0, i ∈ [1,m]
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Multiple Kernel Learning

Let K1, . . . ,Kd : X × X → R be PDS kernels, associated with
respective feature maps Φj : X → Hj , j ∈ [1, d ]

Consider “weighted” Cartesian product feature space

Φθ :=
√
θ1Φ1 × · · · ×

√
θdΦd where θ1, . . . , θd ≥ 0 are weights

I corresponds to weighted kernel Kθ := θ1K1 + · · ·+ θdKd

SVM optimization problem:

min
w,b,ξ

1

2
‖w‖2

H + C
m∑
i=1

ξi

subject to yi (w · Φθ(xi ) + b) ≥ 1− ξi ∧ ξi ≥ 0, i ∈ [1,m]
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+b) ≥ 1− ξi ∧ ξi ≥ 0, i ∈ [1,m]

where w = (w>1 , . . . ,w
>
d )>

How to compute a “good” weight vector θ = (θ1, . . . , θd)?
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Multiple Kernel Learning (MKL)

MKL optimization problem:

min
w,b,ξ,θ:θ≥0‖θ‖≤1

1

2

d∑
j=1

‖wj‖2
Hj

+ C
m∑
i=1

ξi

subject to yi

( d∑
j=1

√
θjwj · Φj(xi ) + b

)
≥ 1− ξi ∧ ξi ≥ 0

Core idea:
I Optimize over the kernel weights θ1, . . . , θd
I Restrict ‖θ‖ to avoid overfitting

F In the following ‖θ‖ ≡ ‖θ‖p
def.
= (

∑d
j=1 |θj |

p)
1
p (“`p-norm”)

Problem: OP is not convex because of the mixed products
√
θjwj
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Multiple Kernel Learning (MKL)

Change of variables: wnew
j :=

√
θjw

old
j

⇒ Equivalent MKL optimization problem:

min
w,b,ξ,θ:θ≥0‖θ‖p≤1

1

2

d∑
j=1

‖wj‖2
Hj

θj
+ C

m∑
i=1

ξi

subject to yi

( d∑
j=1

wj · Φj(xi )︸ ︷︷ ︸
=w·Φ(xi )

+b
)
≥ 1− ξi ∧ ξi ≥ 0, i ∈ [1,m]

Convex problem: because any function (x, y) 7→ xMx
y with positive

semi-definite M is convex for y > 0

Convention: 0/0 := 0 and x/0 :=∞ for x 6= 0
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Rademacher Complexity of MKL
Theorem
Let K1, . . . ,Kd : X × X → R be PDS kernels with associated feature mappings Φj : X → Hj ,
j ∈ [1, d ]. Let S ⊆ {x : Kj (x , x) ≤ R2, j ∈ [1, d ]} be a sample of size m, put q := 2p/(p + 1)

and q∗ := q/(q − 1), and let H = {x 7→ w · Φ(x) :
∑d

j=1

∥∥wj

∥∥2

Hj
/θj ≤ Λ2,θ ≥ 0, ‖θ‖p ≤ 1}.

Then,
R̂S (H) ≤

Λ

m

√
c ‖(Tr(K1), . . . ,Tr(Kd ))‖ q∗

2

≤
√

c

m
ΛRd1/q∗ , c := max(1, q∗ − 1).

Proof.
First note that, minθ≥0,‖θ‖p≤1

∑d
j=1

a2
j

θj
= ‖(a1, . . . , ad )‖2

q with q = 2p/(p + 1) for any

a1, . . . , ad ∈ R. Thus, denoting ‖w‖2,q :=
∥∥∥(‖w1‖H1

, . . . , ‖wd‖Hd
)
∥∥∥
q
,

R̂S (H) =
1

m
E
σ

[
sup∑d

j=1 ‖wj‖2
Hj
/θj≤Λ2

θ≥0,‖θ‖p≤1

w ·
m∑
i=1

σiΦ(xi )

]
=

1

m
E
σ

[
sup

‖w‖2,q≤Λ
w ·

m∑
i=1

σiΦ(xi )

]

(∗)

≤
Λ

m
E
σ

[∥∥∥ m∑
i=1

σiΦ(xi )
∥∥∥

2,q∗

]
(∗∗)

≤
Λ

m

( d∑
j=1

E
σ

∥∥∥ m∑
i=1

σiΦj (xi )
∥∥∥q∗
Hj

)1/q∗

(∗∗∗)

≤
Λ
√
c

m

( d∑
j=1

( m∑
i=1

‖Φj (xi )‖2
Hj

)q∗/2
)1/q∗

=
Λ
√
c

m

√
‖(Tr(K1), . . . ,Tr(Kd ))‖ q∗

2

where (∗), (∗∗), and (∗ ∗ ∗), is by Hölder’s, Jensen’s, and Khintchine/Kahane’s inequality.
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