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Die Energiewende

• Electricity is created in 
many more places than 
before

• Electricity is consumed in 
many places

• Places of production are 
not evenly distributed 
across the country

• Many say we need to build 
new electricity highways

Source: http://www.deutsche-mittelgebirge.de/
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Die Energiewende

• How can we do this as 
cheap as possible?

• Not all connections are 
possible 
– Mountains, rivers, …

• Different connections have 
different costs

City
E-Plant
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Die Energiewende

• Requirement for a solution: 
Every city and every plant 
must be connected to the 
network
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Abstraction

• Given an undirected, 
positively weighted, 
connected G=(V,E)

• Find a subset E’E such 
that cost(E’) is minimal and 
G’=(V, E’) is connected
– cost(E’): Sum of the edge 

weights
• E’ (or G’) is called a minimum 

spanning tree (MST) for G
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Example 1

• Cost = 62
10

6

5

1

2

4
16

4

14



Marius Kloft: Alg&DS, Summer Semester 2016 7

Example 2

• Cost = 61
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First Algorithm

• Let’s try greedy
– Sort edges by weight
– Add edges to E’ whenever it 

connects a new node to 
something

• Hmm 
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Second Algorithm

• Let‘s try greedy – another way
– Sort edges by weight
– Add cheapest edge to E’
– Add edges to E’ in ascending 

order such that every new edge 
connects a new node with the 
graph induced by E’

– Repeat until all nodes are 
connected

• Cost = 42 
– Is this optimal?
– Does this always work?
– How can we implement this 

algorithm efficiently?
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Overview 

• First algorithms for computing MST date back to the 1920s
• Algorithms are not very difficult; much research went into 

efficient implementations
• Actually, MSTs can be computed in a greedy manner
• Algorithms need not grow only one component; in general, 

we may have “connected islands” that all get connected to 
one component in the end

• In each step, one needs to decide which edge to add next 
to which island (or which edges not to add)

• What are criteria for adding / not adding edges?
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Content of this Lecture

• Minimal Spanning Trees
• Basic Properties

– Tree
– Cuts
– Cycles

• Algorithms
• Implementation
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Mimimal Spanning Tree

• Lemma
Let G=(V, E) and let E’E be the subset of E with minimal 
cost such that G’, the graph induced by E’, is connected. 
Then G’ is a tree (called “minimal spanning tree”, MST).

• Proof
– Recall: A (undirected) tree is a undirected, 

connected acyclic graph
– By definition, G’ is connected and undirected
– Need to show that G’ contains no cycle
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Proof: MST is a Tree

• Imagine G’ had a cycle. Then G’ cannot have minimal cost
– because removing any of the edges of the cycle from E’ would 

create a subset E’’ that has less cost (since we assumed all edge 
weights to be positive), and the induced subgraph would still be 
connected 

• Contradiction

• Remark: If all edge weights are distinct, the MST is unique

6

5

2

4

43

1



Marius Kloft: Alg&DS, Summer Semester 2016 14

Cuts & Crossing Bridges

• Definition
Let G=(V, E). A cut is a binary 
partition of V into sets V1, V2
such that V1V2= and 
V1V2=V.
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Cuts & Crossing Bridges

• Definition
Let G=(V, E). A cut is a binary 
partition of V into sets V1, V2
such that V1V2= and 
V1V2=V.

• Definition
Let G=(V, E) and V1, V2 be a cut 
of V. Any edge connecting a 
node in V1 to a node in V2 is 
called crossing bridge. We 
denote the set of all crossing 
bridges by F.
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Cut Property on Minimal Crossing Bridges

• Lemma (Cut Property)
Let G=(V, E), let V1, V2 be a 
cut of V with crossing bridges 
F. Let F’ be those edges of F 
with minimal weight. Then:
1) Any MST G’ of G must contain at 

least one f’∈F’ 
2) Every f’∈F’ is contained in at 

least one MST of G
• Remarks

– This holds for arbitrary cuts – a 
very powerful statement
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Proof, 1a)

1) Every MST G’ contains at least one f’∈F’
– Assume the contrary (G’ has no such f’) 

and let f’∈F’
– Still, G’ is connected, so it must contain 

at least one of the crossing edges from F
(a) Assume G’ contains only one f∈F

• f must have a higher weight than f’ 
because – by assumption - fF’

• Furthermore, because – by assumption –
f is the only crossing edge, V1 and V2
must be connected in themselves

• Thus, removing f and adding some f’∈F’ 
creates a cheaper MST, so G’ cannot be 
minimal – contradiction. 

f > f’
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Proof, 1b)

1) Every MST G’ contains at least one f’∈F’
(b) The proof is similar if G’ contains 

multiple fi∈F
• Write f’=(v,v’)
• Since G’ is connected there exists a path p in 

G’ from v to v’
• Since f’ is a crossing bridge, v and v’ must lie 

on opposite sides of the cut
– So the path p contains a crossing bridge fi∈F

• Removing fi from MST G’ breaks G’ into two 
components, and adding f’ re-connects them

– resulting in cheaper MST (since f’ has smaller 
weight than fi because fiF’)

– Contradiction

f’

fi
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Proof, 2)

(2) Every f’∈F’ is contained in at least 
one MST of G

– Imagine f’ is not contained in any MST 
– Let G’ be such an MST
– Proof uses analogue argument as in 

(1):
• Consider f∈F connecting V1 and V2  
• Removing fi from G’ breaks G’ into two 

components, and adding f’ re-connects 
them, resulting in G’’ with equal or 
cheaper cost as G’

• Thus G’’ is an MST - Contradiction

f ≥ f’
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Beware

• For a cut V1, V2, an MST G‘ may (have to) contain more 
than one crossing edge (but one must have minimal 
weight)
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Content of this Lecture

• Minimal Spanning Trees
• Basic Properties

– Tree
– Cuts
– Cycles

• Algorithms
• Implementation
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Cycles

• Lemma (cycle property)
Let G=(V, E) and G’=(V, E’) with E’=E\e for some edge e 
such that G’ still is connected. Let T’ be an MST for G’. 
When we add e to T’ and remove the edge with the 
highest weight on the then introduced cycle in T’, forming 
T, then T is an MST for G.

• Proof idea
– Adding e must build a cycle because T’ is MST over the same V
– Removing any of the edges on the cycle still leaves a connected 

tree
– Removing the most expensive one leaves the minimal tree
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Cycle Property
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Implications

• Note that T’ is an MST for G without e
• Imagine we would enumerate edges by some order
• Taking into account a new e allows us to replace an edge 

in T’ with a cheaper one, creating a “better” MST for G
– If e is not the edge with the highest weight on the cycle

• This means that an edge with maximal weight on a cycle in 
G cannot be part of any MST of G
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Content of this Lecture

• Minimal Spanning Trees
• Basic Properties
• Algorithms

– R.C. Prim: Shortest connection networks and some generalizations. 
Bell System Technical Journal, 1957

• Also Jarnik, Prim, Dijkstra: Jarník, 1930 – Prim, 1957 – Dijkstra , 1959 
– J. Kruskal: On the shortest spanning subtree and the traveling 

salesman problem. Proc. of the American Mathematical Soc., 1956
– Otakar Borůvka: O jistém problému minimálním (Über ein gewisses 

Minimierungsproblem), 1926
– [Wikipedia, OW93, Sed04, Cor03]

• Implementation
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Prim‘s Algorithm

• Prim’s Algorithm
Start with an empty tree T. Continue adding the edge e 
with the lowest cost to T such that e connects T with a 
new node until all nodes of G are in T. Then T is an MST

• Proof
– Consider, at each stage, nodes in T as one partition V1 and all other 

nodes as the other partition V2
– By cut-property lemma, the cheapest crossing-edge between V1

and V2 must be in an MST of G
– Since we only add those edges, T finally must be an MST

Greedy; we never 
make mistakes
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Prim‘s Algorithm: Example
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Prim‘s Algorithm: Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14



Marius Kloft: Alg&DS, Summer Semester 2016 29

Kruskal’s Algorithm

• Start with an empty forest F. Continue 
“adding” edges e to F in order of increasing 
cost until F becomes a tree. Adding an 
edge e=(v, w) to F proceeds as follows:
– Case 1: If F already contains a tree containing 

both v and w, then e is dropped 
– Case 2: If no tree in F contains either v or w, 

then a new tree formed by e is added to F
– Case 3: If F contains a tree T containing either v 

or w and neither T nor any other tree in F 
contains the other node, then e is added to T

– Case 4: If F contains a tree T containing either v 
or w and a tree T’ containing the other node, 
then T, T’ and e are merged into one tree

v

w

v

w

v w

v w
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Kruskal’s Algorithm: Example
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Proof by Induction (Only Central Idea)

• We show that each of the trees in F is an MST of a 
subgraph of G

• Claim is true at the beginning (F empty)
• Assume claim holds before we consider next edge e=(v, w)
• Case 1: Claim holds, because e would introduce a 

cycle, and e has the highest cost on this cycle 
(all cheaper edges were considered before). 
Thus, e cannot be in an MST of G

• Case 2: Claim holds because e is the cheapest edge 
connecting v and w, and thus the new tree is an MST 
(for subgraph induced by {v,w})

• Case 3: Claim holds because e is the cheapest edge con
necting v (or w) and T, and thus the new tree is an MST

• Case 4: Claim holds because e is the cheapest edge 
connecting T and T’, and thus the new tree is an MST
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Boruvka‘s Algorithm

• Boruvka‘s Algorithm
Start with an empty forest F. Add all edges (at once) that 
connect a node with its “cheapest” neighbor (edge with 
least cost) – taking care of not introducing cycles. Then 
consider each pair of trees in F and add cheapest crossing-
edge until F becomes a unique tree.

• Proof (and details) omitted; see [Sed04]



Marius Kloft: Alg&DS, Summer Semester 2016 33

Boruvka‘s Algorithm: Example
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Communalities

• All three algorithms iteratively choose an 
edge by the cut property or reject an edge 
by the cycle property
– Prim: Growing T is one partition, all other nodes 

the other (isolated nodes)
– Kruskal: Each T that grows is one partition, all 

other nodes the other (islands of mini-MSTs)
– Boruvka: Each T that grows is one partition, all 

other nodes the other (islands of mini-MSTs)
• Difference is the order in which edges are 

chosen – there are always many candidates
• Differences are the data structures that 

these algorithms need to maintain

…

f’
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Content of this Lecture

• Minimal Spanning Trees
• Basic Properties
• Algorithms
• Implementation

– Prim’s, Kruskal’s
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Implementing Prim‘s Algorithm

• ChooseCheapest: Choose 
cheapest edge connecting a 
node in T to a node not yet in T

• Brute force: Search all such 
edges in every step

• More clever
– Maintain a PQ of nodes reachable 

by one edge from T sorted by cost 
– When adding a new node to T, 

look at its neighbors and add them 
to the PQ (if not reachable before) 
or update costs (if now there is a 
cheaper edge reaching them)

G := (V, E);
T := ∅;
R := E;
for i = 1 to |V|-1 do

e := chooseCheapest( T, R);
T := T  e;
R := R \ e;

end for;
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Example
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• T = {A, F, E, B, G}
• PQ = {(D,6), (I, 6), (C, 7)}

• Choose (A-D, 6)

A
B
C
D
E
F

G
H

I,J
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Example
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• T = {A, F, E, B, G}
• PQ = {(D,6), (I, 6), (C, 7)}

• Choose (A-D, 6)
• New T: {A, F, E, B, G, D}
• PQ = {(C,4), (I, 6), (H, 18)}

A
B
C
D
E
F

G
H

I,J
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Complexity

• n=|V|, m=|E|

• Prim’ algorithm runs in O((n+m)*log(n))
– n times through the loop, performing altogether at most m PQ-

operations in log(n)
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Implementing Kruskal‘s Algorithm

• ChooseCheapest: Simply choose 
cheapest edge in E
– I.e., sort E at the beginning

• UNION-FIND data structure
– Maintains a set of sets (all trees T)
– Needs a method for quickly 

finding the set containing a given 
element (find)

– Needs a method for quickly 
merging two sets (union)

• Can be implemented in O(m*log(n))

G := (V, E);
for i = 1 to |V| do

T[i] := {i};
end do:
repeat

(v,w) := chooseCheapest( E);
E := E \ (v,w);
T := find( v);
T’ := find (w);
if T≠T’ then
T := T  T’;

end if;
until |T|=|V|;


