
Algorithms and Data Structures

Marius Kloft

Graphs 4: Minimal Spanning Trees

Marius Kloft: Alg&DS, Summer Semester 2016 2

Die Energiewende

• Electricity is created in
many more places than
before

• Electricity is consumed in
many places

• Places of production are
not evenly distributed
across the country

• Many say we need to build
new electricity highways

Source: http://www.deutsche-mittelgebirge.de/

Marius Kloft: Alg&DS, Summer Semester 2016 3

Die Energiewende

• How can we do this as
cheap as possible?

• Not all connections are
possible
– Mountains, rivers, …

• Different connections have
different costs

City
E-Plant

Marius Kloft: Alg&DS, Summer Semester 2016 4

Die Energiewende

• Requirement for a solution:
Every city and every plant
must be connected to the
network

Marius Kloft: Alg&DS, Summer Semester 2016 5

Abstraction

• Given an undirected,
positively weighted,
connected G=(V,E)

• Find a subset E’E such
that cost(E’) is minimal and
G’=(V, E’) is connected
– cost(E’): Sum of the edge

weights
• E’ (or G’) is called a minimum

spanning tree (MST) for G

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Marius Kloft: Alg&DS, Summer Semester 2016 6

Example 1

• Cost = 62
10

6

5

1

2

4
16

4

14

Marius Kloft: Alg&DS, Summer Semester 2016 7

Example 2

• Cost = 61

7

10

4

1

3

2

16

4

14

Marius Kloft: Alg&DS, Summer Semester 2016 8

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

First Algorithm

• Let’s try greedy
– Sort edges by weight
– Add edges to E’ whenever it

connects a new node to
something

• Hmm

4

6

5

1

2

Marius Kloft: Alg&DS, Summer Semester 2016 9

Second Algorithm

• Let‘s try greedy – another way
– Sort edges by weight
– Add cheapest edge to E’
– Add edges to E’ in ascending

order such that every new edge
connects a new node with the
graph induced by E’

– Repeat until all nodes are
connected

• Cost = 42
– Is this optimal?
– Does this always work?
– How can we implement this

algorithm efficiently?

1

7

10

6

18

4

11
6

5

3

2

4

5

16

4

14

Marius Kloft: Alg&DS, Summer Semester 2016 10

Overview

• First algorithms for computing MST date back to the 1920s
• Algorithms are not very difficult; much research went into

efficient implementations
• Actually, MSTs can be computed in a greedy manner
• Algorithms need not grow only one component; in general,

we may have “connected islands” that all get connected to
one component in the end

• In each step, one needs to decide which edge to add next
to which island (or which edges not to add)

• What are criteria for adding / not adding edges?

Marius Kloft: Alg&DS, Summer Semester 2016 11

Content of this Lecture

• Minimal Spanning Trees
• Basic Properties

– Tree
– Cuts
– Cycles

• Algorithms
• Implementation

Marius Kloft: Alg&DS, Summer Semester 2016 12

Mimimal Spanning Tree

• Lemma
Let G=(V, E) and let E’E be the subset of E with minimal
cost such that G’, the graph induced by E’, is connected.
Then G’ is a tree (called “minimal spanning tree”, MST).

• Proof
– Recall: A (undirected) tree is a undirected,

connected acyclic graph
– By definition, G’ is connected and undirected
– Need to show that G’ contains no cycle

7

10

6

18

4

11
6

5

3

2

4

5

16

4

14

Marius Kloft: Alg&DS, Summer Semester 2016 13

Proof: MST is a Tree

• Imagine G’ had a cycle. Then G’ cannot have minimal cost
– because removing any of the edges of the cycle from E’ would

create a subset E’’ that has less cost (since we assumed all edge
weights to be positive), and the induced subgraph would still be
connected

• Contradiction

• Remark: If all edge weights are distinct, the MST is unique

6

5

2

4

43

1

Marius Kloft: Alg&DS, Summer Semester 2016 14

Cuts & Crossing Bridges

• Definition
Let G=(V, E). A cut is a binary
partition of V into sets V1, V2
such that V1V2= and
V1V2=V.

7

10

6

18

4

116

5

1

3

2

4
5

16

4

14

V1

V2

Marius Kloft: Alg&DS, Summer Semester 2016 15

Cuts & Crossing Bridges

• Definition
Let G=(V, E). A cut is a binary
partition of V into sets V1, V2
such that V1V2= and
V1V2=V.

• Definition
Let G=(V, E) and V1, V2 be a cut
of V. Any edge connecting a
node in V1 to a node in V2 is
called crossing bridge. We
denote the set of all crossing
bridges by F.

7

10

6

18

4

116

5

1

3

2

4
5

16

4

14

V1

V2

F

Marius Kloft: Alg&DS, Summer Semester 2016 16

Cut Property on Minimal Crossing Bridges

• Lemma (Cut Property)
Let G=(V, E), let V1, V2 be a
cut of V with crossing bridges
F. Let F’ be those edges of F
with minimal weight. Then:
1) Any MST G’ of G must contain at

least one f’∈F’
2) Every f’∈F’ is contained in at

least one MST of G
• Remarks

– This holds for arbitrary cuts – a
very powerful statement

10

6

1

3

2

4
5 4

V1

V2

F

f’

Marius Kloft: Alg&DS, Summer Semester 2016 17

Proof, 1a)

1) Every MST G’ contains at least one f’∈F’
– Assume the contrary (G’ has no such f’)

and let f’∈F’
– Still, G’ is connected, so it must contain

at least one of the crossing edges from F
(a) Assume G’ contains only one f∈F

• f must have a higher weight than f’
because – by assumption - fF’

• Furthermore, because – by assumption –
f is the only crossing edge, V1 and V2
must be connected in themselves

• Thus, removing f and adding some f’∈F’
creates a cheaper MST, so G’ cannot be
minimal – contradiction.

f > f’

Marius Kloft: Alg&DS, Summer Semester 2016 18

Proof, 1b)

1) Every MST G’ contains at least one f’∈F’
(b) The proof is similar if G’ contains

multiple fi∈F
• Write f’=(v,v’)
• Since G’ is connected there exists a path p in

G’ from v to v’
• Since f’ is a crossing bridge, v and v’ must lie

on opposite sides of the cut
– So the path p contains a crossing bridge fi∈F

• Removing fi from MST G’ breaks G’ into two
components, and adding f’ re-connects them

– resulting in cheaper MST (since f’ has smaller
weight than fi because fiF’)

– Contradiction

f’

fi

Marius Kloft: Alg&DS, Summer Semester 2016 19

Proof, 2)

(2) Every f’∈F’ is contained in at least
one MST of G

– Imagine f’ is not contained in any MST
– Let G’ be such an MST
– Proof uses analogue argument as in

(1):
• Consider f∈F connecting V1 and V2
• Removing fi from G’ breaks G’ into two

components, and adding f’ re-connects
them, resulting in G’’ with equal or
cheaper cost as G’

• Thus G’’ is an MST - Contradiction

f ≥ f’

Marius Kloft: Alg&DS, Summer Semester 2016 20

Beware

• For a cut V1, V2, an MST G‘ may (have to) contain more
than one crossing edge (but one must have minimal
weight)

3

6

2
7

Marius Kloft: Alg&DS, Summer Semester 2016 21

Content of this Lecture

• Minimal Spanning Trees
• Basic Properties

– Tree
– Cuts
– Cycles

• Algorithms
• Implementation

Marius Kloft: Alg&DS, Summer Semester 2016 22

Cycles

• Lemma (cycle property)
Let G=(V, E) and G’=(V, E’) with E’=E\e for some edge e
such that G’ still is connected. Let T’ be an MST for G’.
When we add e to T’ and remove the edge with the
highest weight on the then introduced cycle in T’, forming
T, then T is an MST for G.

• Proof idea
– Adding e must build a cycle because T’ is MST over the same V
– Removing any of the edges on the cycle still leaves a connected

tree
– Removing the most expensive one leaves the minimal tree

Marius Kloft: Alg&DS, Summer Semester 2016 23

Cycle Property

7

6

5

1

3

2

4

5

16

4

7

6

5

1

2

4

5

16

4

Add e

6

5

2

4

4

1

6

5

2

4

43

1Remove highest
weight on cycle

6

5

2

43

1

e

G

G’

Marius Kloft: Alg&DS, Summer Semester 2016 24

Implications

• Note that T’ is an MST for G without e
• Imagine we would enumerate edges by some order
• Taking into account a new e allows us to replace an edge

in T’ with a cheaper one, creating a “better” MST for G
– If e is not the edge with the highest weight on the cycle

• This means that an edge with maximal weight on a cycle in
G cannot be part of any MST of G

Marius Kloft: Alg&DS, Summer Semester 2016 25

Content of this Lecture

• Minimal Spanning Trees
• Basic Properties
• Algorithms

– R.C. Prim: Shortest connection networks and some generalizations.
Bell System Technical Journal, 1957

• Also Jarnik, Prim, Dijkstra: Jarník, 1930 – Prim, 1957 – Dijkstra , 1959
– J. Kruskal: On the shortest spanning subtree and the traveling

salesman problem. Proc. of the American Mathematical Soc., 1956
– Otakar Borůvka: O jistém problému minimálním (Über ein gewisses

Minimierungsproblem), 1926
– [Wikipedia, OW93, Sed04, Cor03]

• Implementation

Marius Kloft: Alg&DS, Summer Semester 2016 26

Prim‘s Algorithm

• Prim’s Algorithm
Start with an empty tree T. Continue adding the edge e
with the lowest cost to T such that e connects T with a
new node until all nodes of G are in T. Then T is an MST

• Proof
– Consider, at each stage, nodes in T as one partition V1 and all other

nodes as the other partition V2
– By cut-property lemma, the cheapest crossing-edge between V1

and V2 must be in an MST of G
– Since we only add those edges, T finally must be an MST

Greedy; we never
make mistakes

Marius Kloft: Alg&DS, Summer Semester 2016 27

Prim‘s Algorithm: Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Marius Kloft: Alg&DS, Summer Semester 2016 28

Prim‘s Algorithm: Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Marius Kloft: Alg&DS, Summer Semester 2016 29

Kruskal’s Algorithm

• Start with an empty forest F. Continue
“adding” edges e to F in order of increasing
cost until F becomes a tree. Adding an
edge e=(v, w) to F proceeds as follows:
– Case 1: If F already contains a tree containing

both v and w, then e is dropped
– Case 2: If no tree in F contains either v or w,

then a new tree formed by e is added to F
– Case 3: If F contains a tree T containing either v

or w and neither T nor any other tree in F
contains the other node, then e is added to T

– Case 4: If F contains a tree T containing either v
or w and a tree T’ containing the other node,
then T, T’ and e are merged into one tree

v

w

v

w

v w

v w

Marius Kloft: Alg&DS, Summer Semester 2016 30

Kruskal’s Algorithm: Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Marius Kloft: Alg&DS, Summer Semester 2016 31

Proof by Induction (Only Central Idea)

• We show that each of the trees in F is an MST of a
subgraph of G

• Claim is true at the beginning (F empty)
• Assume claim holds before we consider next edge e=(v, w)
• Case 1: Claim holds, because e would introduce a

cycle, and e has the highest cost on this cycle
(all cheaper edges were considered before).
Thus, e cannot be in an MST of G

• Case 2: Claim holds because e is the cheapest edge
connecting v and w, and thus the new tree is an MST
(for subgraph induced by {v,w})

• Case 3: Claim holds because e is the cheapest edge con
necting v (or w) and T, and thus the new tree is an MST

• Case 4: Claim holds because e is the cheapest edge
connecting T and T’, and thus the new tree is an MST

v

w

v

w

v w

v w

Marius Kloft: Alg&DS, Summer Semester 2016 32

Boruvka‘s Algorithm

• Boruvka‘s Algorithm
Start with an empty forest F. Add all edges (at once) that
connect a node with its “cheapest” neighbor (edge with
least cost) – taking care of not introducing cycles. Then
consider each pair of trees in F and add cheapest crossing-
edge until F becomes a unique tree.

• Proof (and details) omitted; see [Sed04]

Marius Kloft: Alg&DS, Summer Semester 2016 33

Boruvka‘s Algorithm: Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Marius Kloft: Alg&DS, Summer Semester 2016 34

Communalities

• All three algorithms iteratively choose an
edge by the cut property or reject an edge
by the cycle property
– Prim: Growing T is one partition, all other nodes

the other (isolated nodes)
– Kruskal: Each T that grows is one partition, all

other nodes the other (islands of mini-MSTs)
– Boruvka: Each T that grows is one partition, all

other nodes the other (islands of mini-MSTs)
• Difference is the order in which edges are

chosen – there are always many candidates
• Differences are the data structures that

these algorithms need to maintain

…

f’

Marius Kloft: Alg&DS, Summer Semester 2016 35

Content of this Lecture

• Minimal Spanning Trees
• Basic Properties
• Algorithms
• Implementation

– Prim’s, Kruskal’s

Marius Kloft: Alg&DS, Summer Semester 2016 36

Implementing Prim‘s Algorithm

• ChooseCheapest: Choose
cheapest edge connecting a
node in T to a node not yet in T

• Brute force: Search all such
edges in every step

• More clever
– Maintain a PQ of nodes reachable

by one edge from T sorted by cost
– When adding a new node to T,

look at its neighbors and add them
to the PQ (if not reachable before)
or update costs (if now there is a
cheaper edge reaching them)

G := (V, E);
T := ∅;
R := E;
for i = 1 to |V|-1 do

e := chooseCheapest(T, R);
T := T  e;
R := R \ e;

end for;

Marius Kloft: Alg&DS, Summer Semester 2016 37

Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

• T = {A, F, E, B, G}
• PQ = {(D,6), (I, 6), (C, 7)}

• Choose (A-D, 6)

A
B
C
D
E
F

G
H

I,J

Marius Kloft: Alg&DS, Summer Semester 2016 38

Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

• T = {A, F, E, B, G}
• PQ = {(D,6), (I, 6), (C, 7)}

• Choose (A-D, 6)
• New T: {A, F, E, B, G, D}
• PQ = {(C,4), (I, 6), (H, 18)}

A
B
C
D
E
F

G
H

I,J

Marius Kloft: Alg&DS, Summer Semester 2016 39

Complexity

• n=|V|, m=|E|

• Prim’ algorithm runs in O((n+m)*log(n))
– n times through the loop, performing altogether at most m PQ-

operations in log(n)

Marius Kloft: Alg&DS, Summer Semester 2016 40

Implementing Kruskal‘s Algorithm

• ChooseCheapest: Simply choose
cheapest edge in E
– I.e., sort E at the beginning

• UNION-FIND data structure
– Maintains a set of sets (all trees T)
– Needs a method for quickly

finding the set containing a given
element (find)

– Needs a method for quickly
merging two sets (union)

• Can be implemented in O(m*log(n))

G := (V, E);
for i = 1 to |V| do

T[i] := {i};
end do:
repeat

(v,w) := chooseCheapest(E);
E := E \ (v,w);
T := find(v);
T’ := find (w);
if T≠T’ then
T := T  T’;

end if;
until |T|=|V|;

