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Abstract. We propose a generic hybrid approach that combines clas-
sical thermodynamic models with matrix completion methods (MCMs)
from machine learning. As an example, we embed an MCM into a widely-
used physical model to predict pair-interaction energies in liquid mix-
tures. Using a Bayesian machine-learning framework we predict activity
coefficients for any binary mixture of these components in a thermody-
namically consistent way, thereby surpassing the accuracy of the estab-
lished benchmark model.

1 Introduction

Information on thermodynamic properties of mixtures is of crucial importance in
chemical engineering and chemistry. However, providing this information is ham-
pered by a combinatorial problem: there are way too many components, let alone
possible mixtures of components, thermodynamic properties, and state points
to study all relevant combinations in experiments. Consequently, experimental
data on thermodynamic properties are available only for a small fraction of
the relevant mixtures. Therefore, methods for the prediction of thermodynamic
properties of mixtures are essential in practice. While physical methods were the
gold standard in the last decades, data-driven methods from machine learning
(ML) [5–7, 10], and, in particular, hybrid models combining both worlds [8, 9,
11, 12] are recently offering more and more promising alternatives. Of outstand-
ing significance are activity coefficients, which describe the deviation from ideal
mixtures and are the key properties for modeling, e.g., phase equilibria.

Our contributions are as follows:

– We propose a hybrid method for predicting activity coefficients of binary
mixtures by combining ML with a physical model.

– We accurately predict activity coefficients in unseen mixtures.
– We compare to and outperform the current state-of-the-art physical predic-

tion model UNIFAC [3, 4].
⋆ This paper is a shortened version of a previously published journal paper by the
same authors [8].
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Fig. 1. Illustration of embedding an MCM into a physical model of mixtures (here: the
lattice model UNIQUAC). Blue part: application of an MCM to pair-interaction ener-
gies Uij . Red part: the physical model relates Uij to temperature- and concentration-
dependent activity coefficients γij . Yellow part: γij are directly related to observ-
able mixture properties (e.g., vapor–liquid equilibria, liquid–liquid equilibria, and
solid–liquid equilibria by thermodynamic laws.

2 Method: MCM-UNIQUAC

The idea behind our approach is shown in Fig. 1. Our goal is to predict activity
coefficients γij of pure solutes i in pure solvents j. We have a physical model [1,
14] that is able to predict γij dependent on temperature and concentration, if
the pair-interaction energies of the pure components Uii and Ujj as well as of
the mixture Uij are known. However, for most binary mixtures, U is unknown.
Thus, we use a matrix completion method (MCM) to predict the pair-interaction
energies for unseen binary mixtures. For describing activity coefficients γij of
pure solutes i in pure solvents j, the physical model can be written as:

ln γij(T, xi) = fUNIQUAC(T, xi, Pi, Pj , Uii, Ujj , Uij), (1)

where the function fUNIQUAC contains the UNIQUAC equation (see full paper
[8]). Here, T is the temperature, xi is the mole fraction (concentration) of com-
ponent i in the mixture, and Pi, Pj are pure-component parameters of i and j,
respectively, which are typically known.

We now use the MCM to generalize this model to binary mixtures where no
experimental data is available. We factorize this matrix U ∈ RM×M , where M
is the number of components, as follows

U = θTβ + βT θ, (2)

where θ ∈ RK×M and β ∈ RK×M and K is the feature vector dimension (we
use K = 3). The right-hand side of Eq. 2 is constructed in such a way that the
physical constraint of symmetry in the pair-interaction energies, Uij = Uji ∀i, j,
is enforced, resulting in a symmetric matrix.

We use a probabilistic model in which the ln γij variable is modeled with a
Cauchy likelihood

p(ln γ|T, xi, Pi, Pj , Uii, Ujj , Uij) = Cauchy(ln γ|fUNIQUAC(·))
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Fig. 2. Mean absolute error (MAE) of MCM-UNIQUAC on the training and test set
(left) and comparison to UNIFAC [3] based only on those systems that can also be mod-
eled with UNIFAC (right). Bars indicate the results of MCM-UNIQUAC and UNIFAC,
and lines denote the baselines obtained by directly fitting UNIQUAC pair-interaction
parameters (∆Uij , dotted) or pair-interaction energies (Uij , dashed) to all available
data points. Error bars denote standard errors of the means.

and Gaussian priors on the latent variables θ and β. We trained our model us-
ing the probabilistic programming language Stan [2] and resorted to mean-field
Gaussian Variational Inference [13] for obtaining an approximate posterior dis-
tribution for the activity coefficients. The final prediction was made by averaging
1,000 samples from the posterior. 5

MCM-UNIQUAC was trained end-to-end on a set of measured logarith-
mic temperature- and concentration-dependent activity coefficients in binary
mixtures ln γij from the Dortmund Data Bank (DDB) [15]. The considered
M = 1, 146 components result in M(M − 1)/2 = 656, 085 possible different
binary systems, but experimental data are only available for 12,199 of these sys-
tems. Data for 80% of the systems were used for training, 10% of the systems
were used for validation, and 10% for testing.

3 Results and discussion

The results obtained with MCM-UNIQUAC are shown in Fig. 2 (left), where the
mean absolute error (MAE) is reported. In Fig. 2 (right), we compare it with
the best available physical method for the prediction of activity coefficients, the
group-contribution model modified UNIFAC (Dortmund) [3, 16]. In contrast to
MCM-UNIQUAC, UNIFAC cannot be applied to all systems for which data are
available (denoted as ‘complete horizon’ in Fig. 2 (left)) because multiple group-
interaction parameters are missing. Hence, only those subsets of the training set

5 More details in the full paper [8].
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Fig. 3. Prediction of the vapor-liquid equilibrium in ternary systems at constant pres-
sure with MCM-UNIQUAC and comparison to experimental data (exp.) from the DDB
[15]. The pressure and the composition of the liquid phase were specified, the composi-
tion of the corresponding vapor phase was predicted (pred.). Left: acrylic acid (AcrAc)
+ acetic acid (AceAc) + tetrachloromethane (TCM) at 100 kPa. Right: toluene (Tol)
+ isopropylbenzene (IPB) + α-methyl styrene (α-MS) at 101 kPa.

and of the test set for which UNIFAC could be applied were used; this ‘UNIFAC
horizon’ covers 7,578 of 9,759 systems from the training set and 961 of 1,220
systems from the test set. As baselines, the scores obtained for the different sets
by directly fitting UNIQUAC parameters to all available data points are marked
as lines in Fig. 2. For an in depth explanation of the lines, please refer to the
full paper [8]. MCM-UNIQUAC not only allows modeling binary mixtures, but
can also be applied to multi-component mixtures. As an example, isobaric VLE
phase diagrams for two ternary systems are shown in Fig. 3. The constituent
binary subsystems of these systems were part of neither training nor validation
set. Predicted and experimental values agree very well.

4 Conclusion

In the present work, we describe a novel hybrid approach for predicting ther-
modynamic properties of mixtures, which combines matrix completion methods
(MCMs) with physical modeling. The basic idea is to predict the pair-interaction
energies, as used in basically all physical models of mixtures, between compo-
nents in mixtures using MCMs. We thereby generalize the physical model to
yield predictions for all binary systems. We demonstrate the predictive capacity
of our model as compared to the existing physical benchmark model UNIFAC,
which we can clearly outperform. Our hybridization approach is generic, it can
be applied to any mixture property, and any physical model based on pair inter-
actions can be used. In the future, among others, we plan to extend our approach
to more sophisticated ML methods.
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