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Abstract. Generating parametric shapes with respect to their struc-
tural and functional characteristics is a challenging and demanding prob-
lem. Conventional parameterization techniques are complex and require
manual intervention and multiple cycles to produce plausible shapes,
which makes the overall parameterization process extremely sensitive,
time- consuming and error-prone. Despite these techniques’ slow and it-
erative nature, a significant amount of data has been gathered over many
years, prompting the community to turn to data-driven techniques like
deep generative models for automatic parameterization. However, pa-
rameterizing shapes following necessary functional constraints is crucial
but notoriously difficult and still needs to be studied. Therefore, we pro-
pose a data-driven framework that implicitly learns to generate plausible
parametric aerodynamic shapes under specified constraints. We explore
and compare several generative models, including generative adversar-
ial networks and variational autoencoders, and systematically evaluate
them for generation quality, diversity, and disentanglement aspects. Our
framework, including a β-VAE model, enables the automatic genera-
tion of novel airfoils with watertight boundaries and interactive genera-
tion with its distributed and disentangled latent space. Through rigorous
evaluation of our method, we demonstrate that the generated distribu-
tion closely matches the true distribution, resulting in the generation of
highly realistic airfoils. Our method dramatically outperforms the cur-
rent benchmark in terms of the quality and diversity of generated airfoils
and establishes a new benchmark for constraint-based parameterization.

Keywords: Aerodynamic shapes · Deep Generative Models · VAE.

1 Introduction

Parametric shapes like airfoils, hydrofoils, fans, and turbines are used in a variety
of applications, including aerodynamics, electronics, and automobiles, and are
developed by combining parameterization and optimization techniques. These
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techniques aim to develop shapes that yield optimal performance in terms of
their functionality. The shapes are represented by one or more parametric func-
tions in a high-dimensional space, parameterized by a set of design variables.
Traditional parameterization techniques are explicit, meaning the parameters of
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Fig. 1. An example of an airfoil from the UIUC dataset [33]. The chord of an airfoil
is zero-centered. The leading edge and trailing edge points coincide with the chord.
The direction of the lift component of aerodynamic force is perpendicular to the chord,
and that of the drag is along the chord towards the trailing edge. Feasible airfoils have
higher lift than drag.

the designs are manually set by a human expert. They are further optimized by
employing numerical simulation tools such as computational fluid dynamics [31]
or Computer-Aided Engineering (CAE) that consider various functional restric-
tions and boundary conditions. To generate feasible designs with acceptable per-
formance using these techniques, several back-and-forth iterations through the
design and optimization phases are required, making the overall process exceed-
ingly time, memory, and computation intensive. Despite these challenges, the
aerodynamics community has produced a large number of viable airfoil designs
that may be utilized for a variety of tasks, including shape synthesis, optimiza-
tion, and flow field prediction [1].

Modern parameterization techniques, such as BézierGAN [6], are data-driven
models based on GANs [12], one of the prominent Deep Generative Models
(DGMs) that can automatically parameterize aerodynamic shapes, also known
as airfoils. An airfoil is a critical component of an aircraft design responsible for
the aerodynamic force generated during operation. Figure 1 illustrates the two
components of aerodynamic force: lift and drag. An airfoil must be streamlined
to generate more lift than drag to enable an aircraft to take off. As a result, the
coefficient of lift-to-drag, CL/CD, is an important functional characteristic of an
airfoil. However, generating realistic and practically viable airfoils while ensuring
such a functional characteristic is an extremely challenging problem mainly due
to scarcity of data and the high dimensionality of the shapes.

This paper proposes a hybrid DGM-CAE framework for automated, constraint-
based parameterization of airfoil designs while ensuring their mechanical func-
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tionality. We enforce the CL/CD values obtained from numerical simulation soft-
ware and constrain the airfoil generation using these values to generate airfoils
for specific CL/CD ratios. This approach simplifies and accelerates the design
process and can be used for effective and interactive shape parameterization. To
sum up, our contributions are as follows:

1. We develop a hybrid DGM-CAE framework for automated and constraint-
based airfoil parameterization while preserving their mechanical functional-
ity.

2. We assess the results using relevant metrics for various generation aspects
such as quality, diversity, and disentanglement. In addition, we also evaluate
our framework’s ability to parameterize original designs from the dataset
and the precision of the enforced functional constraint.

3. The quantitative results demonstrate that our framework outperforms the
baseline BézierGAN model in terms of quality and diversity of generated
shapes.

4. To the best of our knowledge, this is a first attempt at conditionally gen-
erating airfoil designs using their CL/CD, which is a continuous real-valued
number, unlike widely used conditional models [24] which use discrete labels.

2 Related Work

In this section, we discuss some of the traditional methods for parametric shape
synthesis and the most recent popular DGMs for both high-quality synthesis
and representation learning.

2.1 Parametric Shape Synthesis for Product Design

Methods for understanding design spaces and synthesizing new shapes or de-
signs can be categorized into two broad categories: knowledge-driven methods
and data-driven methods [37]. Knowledge-driven approaches use explicit rules
to develop new shapes. Computational Design Synthesis is an example of a
knowledge-driven method for synthesizing new shapes, which is most popularly
used for gearboxes and bicycle frames [2]. Other methods include B-splines [22],
Bézier curves [38], Free Form Deformation [39], Class-Shape Transformations
(CST) [13], and PARSEC [9], which are parameterization methods that are
used to generate curves for aerodynamic shapes. These parameterization meth-
ods adjust the control points or parameters using random perturbation or Latin
hypercube sampling [39]. However, these knowledge-based methods suffer from
high dimensionality of the design space [6] and unknown limits to the parameters
that define the geometry. On the other hand, data-driven models [5,6,40] implic-
itly learn useful knowledge about the geometric representation from the existing
designs in the dataset. DGMs, in particular, address the issues mentioned above
by generating a compact latent representation that captures the most distinct
and informative features of real-world designs and their parameter constraints.
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2.2 Deep Generative Models

DGMs have proven to be successful in generating high-dimensional data in a
completely unsupervised setting. Ideally, a good generative model should learn
meaningful and compact representations for a qualitative and diverse generation.
Two of the most popular generative models are Variational Autoencoders (VAEs)
[19] and Generative Adversarial Networks (GANs) [12]. Although GANs are rel-
atively better at synthesizing realistic data, they are notoriously difficult to train
and often result in unstable models. VAEs on the other hand, are easier to train
and converge faster. In addition, they are more successful than GANs in creating
compact and effective representations in a continuous latent space. Such repre-
sentations are useful for transferring specific characteristics and allowing control
over the synthesis task, making it more productive and interactive [21]. To obtain
a better trade-off in quality and training, we implement different models based
on GAN and VAE frameworks for airfoil generation and systematically evalu-
ate them to find the best suitable model for our application. In the following
sections, we explain the theoretical foundations of both models in detail.

Variational Autoencoder VAEs are rooted in Bayesian inference i.e., they
project the underlying training data distribution onto a distributed latent space
that comprises independent factors of variation in the data. At inference, a VAE
allows us to sample from the latent space to generate novel data that ideally
resembles real data. Consider x to be our input data and z to be a latent vector.
The VAE objective is to model the distribution of x which can be formulated as
shown in Eq. 1, where p(x|z) is known as conditional likelihood, and p(z) is the
prior distribution.

p(x) =

∫
p(x|z)p(z) dz (1)

Computing the conditional likelihood requires computation of an unknown quan-
tity known as the posterior of the true data p(z|x). The VAE uses an encoder
network to parameterize the variational approximation of the posterior distribu-
tion. The conditional likelihood is parameterized with a decoder network. The
loss function for a VAE is given by Eq. 2 where the first term represents the re-
construction loss, and the second term is the KL divergence that minimizes the
distance between the posterior and the prior. The prior distribution is usually a
simple distribution, such as the standard normal distribution.

L = Eq(z|X)[− log p(X|z)] +KL (q(z|X)||p(z)) (2)

Generative Adversarial Networks Generative adversarial networks (GANs)
[12, 28] also model the true data distribution p(x) but use adversarial learning
instead. A typical GAN network comprises two components - a generator G and
a discriminator D. A generator generates new samples using a low-dimensional
noise vector and aims to fool the discriminator whose task is to distinguish real
samples from fake ones (samples generated by the generator). G and D are
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trained as a min-max in an adversarial fashion where each component strives to
be better than the other network at their respective tasks. The GAN objective
is given as

min
G

max
D

E(G,D) = Ex∼Pdata
[logDx] + Ez∼Pz

[log(1−D(Gx))], (3)

where x is sampled from the real data distribution Pdata, z represents the noise
vector sampled from the noise distribution Pz, and G(z) is the fake distribution.

2.3 Learning Disentangled Representations

Modeling real-world data using generative models like GANs and VAEs creates
a low-dimensional latent space. Ideally, this latent space represents the most cru-
cial and distinct features of the data. In the case of VAEs, choosing an isotropic
Gaussian prior has a latent space where every dimension is independent and pro-
duces what is generally known as a disentangled latent space. A latent space is
called disentangled if each of its dimensions represents one and only one under-
lying factor of variation in the data [16]. The disentangled latent space enables
interactive and controlled generation by allowing us to change specific features
or to obtain data having certain features from generative distribution. Unfortu-
nately, interactive generation is not possible with GANs as they cannot produce a
disentangled representation of the data. Instead the representation is entangled,
making it hard to interpret [7].

Several extensions based on the VAE framework, such as β-VAE [15], Fac-
torVAE [17], and those based on the GAN framework, including InfoGAN [7],
have been proposed to obtain a better generation quality and better disentangle-
ment. Higgins et al. [15] and Chen et al. [4] provide simple modifications to the
original VAE objective to achieve a better trade-off between generation quality
and disentanglement, whereas Kim and Mnih [17] achieve this with the help of
a discriminator network. InfoGAN, on the other hand, uses additional latent
codes to encode some generative factors from the training data to encourage dis-
entanglement. Other approaches, such as IDGAN [21], combine VAE and GAN
frameworks to produce effective disentanglement and generate high-quality im-
ages. We explore several generative models such as β-VAE [15], DCGAN [28],
and FactorVAE [16] and compare them for several generation aspects. Through
evaluation of these models we find out that β-VAE is much simpler, faster and
more reliable for high quality generation and disentanglement. Further, we com-
pare our conditional β-VAE model with the popular BézierGAN model which
is based on InfoGAN. In the next section, we explain our approach for reliable
generation in more details.

3 Approach

Our goal is to produce high-quality airfoil designs that adhere to their perfor-
mance characteristics while also producing disentangled representations of the
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designs. Although GANs and VAEs can synthesize high-quality data, particu-
larly images, their potential to synthesize parametric shapes has yet to be fully
investigated. Therefore, we propose a conditional parameterization framework
for synthesizing new airfoil designs constrained by specific CL/CD values based
on GAN and VAE networks to obtain high-quality and diverse designs with
disentangled representations. Conditioning the airfoil designs on their CL/CD

values provides a mapping between the CL/CD and the intrinsic characteristics
of the designs. Thus, we develop conditional versions of β-VAE, FactorVAE, and
DCGAN networks.

Functional airfoils need to have smooth and watertight curve. To obtain
such curves, our framework first constructs a binary image representation of
the airfoils. The conditional DGMs are trained using these binary representa-
tions, along with their CL/CD values. In the following part, we discuss the data
representation and conditional parameterization more deeply.

3.1 Data Representation

The parameterization of airfoils is an important stage in aircraft design. The
shape, curvature, and edges of the airfoil have a significant impact on the air-
craft’s aerodynamic properties and the flow fields around it, influencing the op-
timization outcomes [41]. As a result, accurately modeling the airfoil designs, in-
cluding all of the minute details regarding their geometries, is vital. In the UIUC
dataset [33], airfoils are represented by a defined set of discrete design variables.
These may be insufficient for complex airfoil shapes. As a result, we convert
the UIUC data into binary fields in order to create smooth and watertight sur-
faces that preserve the geometry and its details perfectly. More importantly, the
smooth curves enable us to sample as many points from the geometries as nec-
essary. The airfoils in the UIUC dataset are first mapped onto a high-resolution
Signed Distance Field (SDF) [1] and then converted to binary fields. As binary
fields are equivalent to 2D images, we can learn their underlying features using
convolutional operations [32] in the same way as with images. Another reason
to map data onto an SDF is to have a common representation for 2D and 3D
objects, which is challenging to do with alternative data formats. However, due
to the lack of publicly available 3D airfoil data, we have limited our research to
2D airfoil designs.

Signed Distance Field An SDF [1] is formed using a signed distance function
that calculates and assigns a distance to each point in space, with positive dis-
tance for points outside the shape, negative distance for points inside the shape,
and zero distance for points on the shape. Mathematically, a signed distance
function for a set of points Q is given by the distance d of all the points q ∈ Q
from the shape boundary ω as shown in Eq. 4.

SDF (q) =

d(q, ∂ω) q /∈ ω
0 q ∈ ∂ω

−d(q, ∂ω) q ∈ ω
(4)
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Binary Fields The distances to all points within and outside the object are
essential only in applications where global geometry is required. However, for
airfoil parameterization, obtaining only the isosurface that represents the airfoil
shape suffices. Hence, we modify the signed distance function to obtain a binary
field, such that, if ω is the shape boundary, then the points on and inside the
shape boundary form an isosurface, whereas points outside the shape boundary
have a distance of one. Eq. 5 represents the modified signed distance function
for binary fields:

SDFbinary(q) =

 1 q /∈ ω
0 q ∈ ∂ω
0 q ∈ ω

(5)

We fix all distances to be equal to one because it is inconsequential to know
how far the point lies outside the boundary. The obtained binary signed distance
fields are analogous to binary images except that they are obtained as a result
of binary SDF.

3.2 Conditional Parameterization using Generative Models

We enable the conditional synthesis of new airfoil designs by providing the
CL/CD value as a condition to the generative component of the network. The
condition is enforced by concatenating CL/CD values c to the latent vector z.
c is a real-valued number between 0 and 1 which is obtained as a result of the
normalization of CL/CD values. Unlike other conditional models [35] that use a
discrete label as a condition, the CL/CD values are continuous real-valued num-
bers. As a result of such conditional synthesis, the generative component of the
implemented DGMs acts as an implicit parametric function that can generate
airfoils for a given CL/CD condition. At inference, we can sample a noise vector
from a Gaussian distribution N (0, 1) to which we can append any CL/CD value
between zero and one and generate the design that matches the condition. We
can also combine desired shape characteristics from our learned disentangled
latent space to customize the airfoil designs. This enables interactive design syn-
thesis and quick prototyping of desirable shapes. Our method can produce sharp,
smooth, and desirable airfoils without any smoothing function and without hav-
ing to learn any explicit parameters like control points for shape synthesis or
separate latent codes for disentanglement as used in BézierGAN [6].

4 Experimental Results

We explore three DGMs – Deep Convolutional GAN (DCGAN) [28], β-VAE
[15] and FactorVAE [16] – which are known to generate plausible images. We
assess the generated designs quantitatively using the manifold-based metrics
density and coverage. We also demonstrate the quality of disentanglement across
different dimensions of the latent space.
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4.1 Data Preparation

Obtaining Binary Fields We use 2D airfoil designs from the UIUC dataset [33]
comprising nearly 1,600 diverse airfoil designs. It is a public dataset and is widely
used for aerodynamic research. Also, obtaining CL/CD values using numerical
simulation software is possible using this data, which aligns well with our goal.
Examples of airfoil designs and their CL/CD values, are shown in the appendix3.
Each airfoil design in the UIUC dataset is represented by a sequence of discrete
x- and y-coordinates along the airfoil curve. The order of coordinates of every
curve starts from the trailing edge point, followed by points along the upper sur-
face of the airfoil towards the leading edge, the leading edge point and then the
points along the lower surface of airfoil from leading edge towards the trailing
edge. The edges and surfaces can be seen in Figure 1. The original format of the
data produces rough boundaries or requires additional functions for smoothen-
ing the curves. To overcome these challenges, we convert each airfoil curve into
a binary SDF of size 500×500, (refer section 3.4 for data conversion details).

Obtaining CL/CD The CL/CD value represents the lift-to-drag ratio. It can
be obtained using simulation software to simulate the necessary flow fields under
the required settings to obtain optimal airfoil performance. For all the airfoils
in the dataset, we use XFOIL simulation [10] by setting the Reynolds number,
Re = 5 × 105, the Mach number, Ma = 0.0 and the angle of attack, α = 3◦ for
around 1,200 airfoils. Please refer the appendix for more information about the
distribution of the CL/CD values for all 1,200 airfoil designs. To condition on
these values for generation, we normalize them to be between zero and one.

4.2 Evaluation Metrics

Density and coverage (DnC) [26] are used as metrics to assess our model’s per-
formance in terms of quality and diversity. Inception Score (IS) [30] and Fréchet
Inception Distance (FID) [14] are some of the other metrics used to measure
the overall quality of generation, but they cannot distinguish quality from diver-
sity. For example, it is highly impractical if a generative model generates images
that are very similar or generates the same image every time, even if the qual-
ity of generation is good. In that sense, IS and FID are highly uninformative.
Furthermore, Kynkäänniemi et al. [20] show that IS and FID are unreliable for
evaluating generative models because they do not correlate well with the image
quality and produce an inconsistent evaluation.

On the other hand, DnC [26] overcame the earlier metrics’ shortcomings.
They are automatic evaluation techniques that directly compare the fake (gen-
erated) data distribution to the real, allowing us to see how well the generated
distribution matches the training data. Unlike IS and FID, which rely on acti-
vations of a pre-trained Inception model based on ImageNet data [8], DnC are
3 https://github.com/aeroshapesynthesis/constraint_parametererization_
airfoils/blob/main/Appendix.pdf

https://github.com/aeroshapesynthesis/constraint_parametererization_airfoils/blob/main/Appendix.pdf
https://github.com/aeroshapesynthesis/constraint_parametererization_airfoils/blob/main/Appendix.pdf
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Fig. 2. Randomly sampled airfoil designs generated by β-VAE. The designs are realistic
and have sharp and watertight boundaries.

independent of any dataset or model, giving a straightforward and clear eval-
uation method. The main idea behind DnC is to compare the manifold of real
samples to the manifold of fake samples, and then quantify the quality and di-
versity of generated samples based on how the fake samples are placed around
the real samples. Any intermediate layer, especially the fully connected layers of
the generative part of the network (for example, the generator in the GAN or the
decoder in the VAE), can be used to create these manifolds. More information
on the metric and it’s mathematical definition is given in the appendix.

4.3 Training

We train the β-VAE, FactorVAE, and DCGAN models on the UIUC airfoil
dataset after preprocessing airfoils and extracting their CL/CD values. There
are approximately 1,100 airfoils divided into a training set of 900 and a test
set of 200. All models are implemented using Pytorch [27] and are trained on a
single Nvidia Tesla [23] V100-SXM2 32 GB GPU. The batch size is 16 and is
kept the same for all models. The learning rate for encoder and decoder in VAE,
β-VAE and FactorVAE is 10−4, the generator in DCGAN is 2 ∗ 10−4 and for
discriminator in DCGAN and FactorVAE is 10−4. Adam optimization [18] is used
for the training of all models because it can handle sparse gradients and combines
the best properties of the AdaGrad [11] and RMSProp [25] algorithms. VAEs are
generally stable to train and converge faster than GANs; hence we train β-VAE
and FactorVAE for 300 epochs and DCGAN for 500 epochs. Hyperparameter
optimization is an important part of training; therefore, using validation set we
heuristically search for the best hyperparameters for each model. A brief note
on hyperparameter optimization is included in the appendix.

4.4 Qualitative Results

A crucial first step is to visually inspect the results because the generated im-
ages maybe distorted or blurry, and these problems are difficult to address using
quantitative analysis. From qualitative inspection, we observed that the β-VAE
model with a latent dimension of 25 generates the most plausible images with
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Fig. 3. Airfoil designs generated by DCGAN and FactorVAE for different latent dimen-
sion sizes. Heuristic hyperparameter search does not improve the quality of generated
designs.

sharp and watertight boundaries. Figure 2 shows the airfoils and their extracted
boundaries (curves). From visual inspection it is evident that the generated air-
foils are very realistic as it is difficult to distinguish between real airfoils and
airfoils generated using β-VAE. In the case of DCGAN and FactorVAE, the
quality of generation is extremely poor as the generated designs are not sharp
with closed boundaries. We tune all the models for different latent dimension
sizes to find a better fit. But for DCGAN and FactorVAE, the quality of gener-
ated airfoils remain poor for all latent dimensions. Figure 3 shows airfoil designs
generated using DCGAN and FactorVAE. Since, all the generated airfoils for all
latent dimensions are distorted for both the models, these airfoils can’t be used
to extract watertight boundaries and thus, cannot be of any practical use. As
β-VAE model outperforms other models, we quantitatively evaluate its results
using DnC.

4.5 Quantitative Results: Analysis of Airfoil Designs

In this section, we evaluate our model using DnC and compare it to the state-
of-the-art BézierGAN model. For the β-VAE model, we randomly sample from
the prior and generate CL/CD values. The airfoils are then generated using the
decoder and the latent vectors are then extracted from the encoder to calculate
the DnC scores. In total, we extract latent vectors for 500 real and 500 fake
images and calculate the DnC scores. Figure 4 shows the DnC scores for the
β-VAE models for latent dimension size from 5 to 50 with a step size of 5. For
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Fig. 4. Density and Coverage of designs generated using β-VAE model for different
latent dimensions. Latent dimension size of 25 produces high quality designs.

Metric β-VAE BézierGAN
Density 0.82 0.63
Coverage 0.93 0.038

Table 1. Comparison of β-VAE vs BézierGAN for quality and diversity of generated
designs. β-VAE outperforms BézierGAN on all fronts.

lower latent dimension sizes (size below 30), the quality and diversity is better
than those of higher sizes. This is understandable because in high dimensional
spaces, the curse of dimensionality applies and the data becomes more sparse.
For latent dimension size of 25, we can see that the density is the highest which
positively correlates with the observations from the qualitative results. Coverage
is also high (slightly lower than the highest number) indicating more diversity
in the generated samples.

We compared our conditional β-VAE model (having latent size of 25) with
the popular BézierGAN model which also aims at generating novel airfoils, but
without any constraints. Table 1 shows the comparison between the two models.
The β-VAE model outperforms BézierGAN in terms of quality and diversity of
the generated designs.

4.6 Quality of Reconstructions

For successful parameterization, representing the original airfoil design accu-
rately is crucial. For traditional parameterization techniques like PARSEC [34],
MACROS DR [36], and CST [3], the geometric error between the actual airfoil
and the approximated airfoil is calculated using Root Mean Square (RMS) [41].
However, the input and output in our approach is a binary field. While obtaining
curves from the generated binary fields, the points along the curve are sampled
randomly and not in any particular order. Thus, RMS is not a suitable technique
to measure parameterization accuracy because the points that coincide with the
coordinates of an input airfoil cannot be obtained. However, the difference in
geometries may be computed by directly comparing the binary fields of the orig-
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Fig. 5. Traversing across different dimensions of a latent vector using β-VAE. It shows
automatic disentanglement based on geometric traits like shape, size and curvature in
a distributed and a continuous latent space.

inal and reconstructed designs using Intersection over Union (IoU) [29]. IoU is
a popular metric in the computer vision community to calculate the similarity
of any two 2D/3D objects. Let A and B be any two 2D/3D volumes of objects,
then IoU is defined as follows:

|A ∩B|
|A ∪B|

(6)

We can see that β-VAE generates designs with the sharpest and most wa-
tertight boundaries by comparing the outputs of the models shown in Figure 2.
Thus, to calculate the IoU between actual and approximated airfoil designs, we
use the reconstructions obtained from a β-VAE model with β=60 and a latent
dimension of 25. We calculate IoU for a whole image because as long as every
input and output has just one smooth and watertight airfoil without any de-
formity, IoU can effectively calculate similarity. Figure 3 shows that there are
possibilities of distortion while generating airfoil designs and that it might result
in multiple broken objects. Hence we first run all the samples through an off-
the-shelf contour detection technique and select 50 samples for which only one
contour is detected. The average IoU is as high as 0.975, which indicates that
the β-VAE model can accurately reconstruct original airfoils, which makes the
decoder of β-VAE a good parametric function. Examples of real vs reconstructed
airfoils with their IoU are shown in the appendix.

4.7 Disentanglement

We illustrate latent traversal through several dimensions of the noise vector as
well as interpolations between different samples to highlight our model’s poten-
tial to disentangle the latent space based on the geometric properties of the
airfoils and their CL/CD values. Latent traversal (-1 to 1) across different di-
mensions of a noise vector is shown in Figure 5. For each row in Figure 5, we
vary one dimension in the noise vector while keeping all other dimensions, in-
cluding CL/CD value fixed to see the contribution of the varying dimension in
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z1, c1

z1, c1

z1, c1

z2, c2
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Fig. 6. Interpolations based on noise and CL/CD values. Noise vectors, n1 and n2

are randomly sampled and CL/CD values c1 and c2 are 0.1 and 0.99 respectively.
Changing both noise and CL/CD (top) changes size and curvature, whereas, changing
only noise (middle) changes the shape without affecting the curve and changing only
CL/CD (bottom) changes the leading curvature without affecting the shape.

generating of airfoils. Different dimensions depict varying and independent fac-
tors of variation based on the size, shape, nature of leading and trailing edges of
airfoils. The latent traversal is very smooth, and the model can generate feasible
designs for any noise sample, which shows that the latent space is continuous
and interpretable.

We further demonstrate in Figure 6 that our model can distinctly disentan-
gle based on noise and CL/CD values by disentangling different properties of
the airfoils. We sample two noise vectors and two CL/CD values and interpo-
late between the two samples, first by changing both noise and CL/CD, second
by only changing the noise while keeping the CL/CD fixed and last by changing
CL/CD while keeping the noise fixed, as shown in Figure 6. From the first row of
Figure 6 we can observe that, changing both noise and CL/CD changes the size
and the curve at the leading edge. In the second row, we can see that for a fixed
CL/CD, the change in noise only changes the size of the airfoil and no change
in any curves or edges. From the last row we can observe that by changing only
the CL/CD value while keeping the noise fixed only changes the curvature at the
leading edge but no change in airfoil’s size. Thus, our technique achieves success-
ful disentanglement based on geometry as well as the performance characteristics
(CL/CD) of the airfoils.

Test Airfoils
Relative Error (%) 2.11 0.93 2.70 1.85 1.14 3.14 4.05 4.07
IoU 0.991 0.985 0.987 0.977 0.985 0.987 0.980 0.988

Table 2. The relative error between the CL/CD values of the original and reconstructed
airfoils, along with their high IoU scores. Shown are random samples from the test set.
The average relative error on the whole test set is XY.
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4.8 Precision of CL/CD Conditions

We investigate in Table 2 if the CL/CD values of the real airfoils match with their
reconstructed counterparts, to confirm if the reconstructed airfoils adhere to the
CL/CD values that they were conditioned on. The reconstructed airfoils are first
transformed to the data format required by XFOIL, and using the simulations in
XFOIL, we obtain their CL/CD values. However, XFOIL is extremely sensitive to
the coordinates and simulations therefore, not all airfoils converge and CL/CD

for them cannot be obtained. Table 2 shows some examples of the converged
airfoils from the test set, the IoU scores between them and their reconstructed
counterparts and the relative error of the CL/CD value of the reconstructed
airfoils. The accuracy of the reconstruction is very high, as can be observed from
the high IoU values. The relative error between the CL/CD of the test airfoils
and of the reconstructed airfoils is also low. Thus, the conditional β-VAE model
can enforce the CL/CD condition with high precision during the reconstruction
of a design.

5 Conclusion

In this paper, we proposed a hybrid DGM-CAE based framework for automated
and constraint-based parameterization of airfoil designs while ensuring their me-
chanical functionality under the CL/CD value constraint. We show that the
conditional β-VAE model outperforms several other popular generative mod-
els and is best at generating realistic and diverse airfoils with sharp, smooth,
and watertight boundaries while also adhering to the CL/CD constraint. It can
also disentangle several physical properties of the data enabling interactive air-
foil generation much faster than traditional parameterization techniques. Our
framework also outperforms the previous state of the art in terms of quality
and diversity of the generated designs. To the best of our knowledge, this is the
first at attempt of generating airfoil designs conditionally based on their CL/CD

values, thereby creating a new baseline for such a constraint-based parameteri-
zation of aerodynamic shapes. In the future, this approach can be extended to
parameterize 3D airfoils, and depending on the availability of data, many more
additional constraints can be enforced.
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