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Abstract—Conventionally, neuroscientific data is analyzed based 

on the behavioral response of the participant. This approach 

assumes that behavioral errors of participants are in line with the 

neural processing. However, this may not be the case, in 

particular in experiments with time pressure or studies 

investigating the threshold of perception. In these cases, the error 

distribution deviates from uniformity due to the heteroscedastic 

nature of the underlying experimental set-up. This problem of 

systematic and structured (non-uniform) label noise is ignored 

when analysis are based on behavioral data, as is being done 

typically. Thus, we run the risk to arrive at wrong conclusions in 

our analysis. This paper proposes a remedy to handle this crucial 

problem: we present a novel approach for a) measuring label 

noise and b) removing structured label noise. We show its 

usefulness for an EEG data set recorded during a standard d2 

test for visual attention. 
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I.  INTRODUCTION 

In recent years, there has been an increased interest in using 
brain-computer interfaces based on electroencephalography 
(EEG-BCI, e.g. [1) for novel applications, such as mental state 
decoding [2, 3]. In EEG experiments, each trial is associated 
with a stimulus/response, i.e. the stimulus presented to the 
participant and the behavioral response of the participant to it 
(for instance, in form of a button press). Typically, this 
information is used as a category or label and the neural data is 
then analyzed accordingly, in categories such as ‘correct 
response' vs. ‘incorrect response’. While this conventional 
approach assumes brain and behavior to be in line with each 
other, they might disagree. For example, this can be the case 
for tasks with stimuli at the threshold of perception (non-
conscious processing, cf [4] for instance) and experiments with 
time pressure, resulting in responses that are unreliable or even 
close to random guessing. A significant increase in mislabeled 
trials can also be caused or exacerbated when participants 
become distracted, bored, or sleepy (see also [5]). We assume 
this label noise to be systematically structured. This challenges 

most of the learning algorithm employed today: they struggle 
not only with non-uniform label noise [6, 7], but also with 
highly misbalanced classes (e.g., more false than correct 
responses in complex tasks), and the presence of brain states 
that are not accounted for in the experimental protocol (e.g., 
'participant not on task'). 

In this paper, we propose an unsupervised learning 
algorithm called Latent Variable Support Vector Data 
Description (LatentSVDD) as a remedy for this challenge. 
LatentSVDD generealizes SVDD [8], which itself is an 
unsupervised anomaly detection method. The principle idea is 
to introduce latent variables into the SVDD. In the EEG 
context, these latent states can be interpreted as different brain 
states. In this paper, we show the usefulness of our novel 
framework on EEG data from a d2 attention test. In this 
experimental scenario, our goal is to determine whether a 
participant has processed a potential error on a neural level, 
which may or may not be in line with the behavioral level, i.e. 
whether the response was de facto erroneous. 
Neurophysiologically speaking, response errors have been 
found to elicite two components in the event-related potentials 
(ERPs): the error negativity and the error positivity [9,10]. 
While the former has been attributed to the comparison process 
rather than its outcome, the latter has been suggested to be 
related to error or post-error processing [11]. Therefore, we 
concentrate on the error positivity in the following, i.e. a 
centro-parietal maximum that has been found to occur  
200-500ms post response. 

II. LEARNING METHODOLOGY 

In the following, we consider a learning scenario that is 
characterized by labels that have varying levels of reliability. 
As a remedy, we propose a measure based on kernel target 
alignment scores (KTA) and a novel, data-driven learning 
approach (LatentSVDD) for tackling the following problems: 
(1) detecting anomalous trials, (2) handling systematic label 
noise, (3) revealing latent (brain) states, (4) verifying the 
results. 



 

 

A. Kernel Target Alignment (KTA) 

We are given N  labels 
Ny }1,1{ and a Gram matrix 

),( RNxNMK . Kernel target alignment (KTA) [12] is a 

method to measure the fit between the gram matrix and the 

label set. It is defined as 
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A high value is achieved, if data points of one class lie 
nearby and data points of opposite classes are far away. Since 
we cannot access the underlying ground truth of an EEG 
experiment, KTA scores are useful as a natural indicator for the 
fit between labels and data before and after de-noising. 

B. Latent Variable Support Vector Data Description 

(LatentSVDD) 

Our approach is based on the paradigms of support vector 
learning [13,14], density level set estimation, support vector 
data description (SVDD) [8,15] and extensions [16]. We are 

given N  data points Nxx ,...,1 , where ix  lie in some input 

space 
dR . The data is usually mapped from the input space 

into some feature space c

d FR: . In SVDD, the goal is 

to find a center c and a radius R of a hypersphere, that contains 

the bulk of the data: 
2

)(,: xcxRRf d  . Thus, 

the optimization problem can be stated as  

Minimize 
2R  

Such that 
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In this paper, we extend the classical mapping of SVDD by 

including a latent variable Zz  and a joint feature map 

FxRd: . Consequently, the resulting model 

becomes more expressive:  

2
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Here, we define our joint feature map as a variant of the 

multi-class joint feature map ),()(),( zzxzx k  

with }12,...,1{k  (i.e. 12 latent brain states, which is more 

than we expect and thus serves as an upper bound). We train 
our method on all available data points, which results in 
anomaly scores and latent variables for each of them. Labels 
are assigned depending on maximum KTA scores. Figure 1 
visualizes the main concepts. 

In order to gain insights on the behavior of the proposed model, 

we generated toy data and applied the LatentSVDD. The 

outcome can be seen in Figure 2. As depicted on top, the level 

of anomaly (visualized by dot size and color) is reflected well 

by the scores assigned by LatentSVDD. The plot at the bottom 

encodes the separation of the data points by latent states. 

Figure 1.  Main idea: we infer a model of normality by learning a hypershere 

containing most of the data. 

 

Figure 2.  Model output 

on toy data. Top: anomaly 

scores (dot size and color 

corresponds to degree of 
anomaly). Bottom: areas of 

active latent variables. 

 

 

 

 

 

 

 

 

III. EEG EXPERIMENT 

Participants (N=20) were presented with a d2 test [17], a 
common test of visual selective attention (300 trials). 
Participants were asked to respond by button press as fast as 
possible, using their right vs. left hand for the target vs. non-
target stimuli (20% vs. 80% of trials). Feedback on speed and 
correctness was given 500ms post response. Brain activity was 
recorded with multichannel EEG amplifiers with 119 Ag/AgCl 
electrodes placed according to an extended international 10-10 
system, sampled at 1000 Hz and band-pass filtered between 
0.05 Hz and 200 Hz.  

We examined the neural response that was elicited by 
receiving feedback. For this, the EEG data was divided into 
epochs of [-200, 500ms] relative to the onset of feedback 
presentation. These epochs were then baseline corrected, using 
the 200ms interval prior to feedback. Artifact rejection was 
performed using a min-max criterion and a variance criterion 
(trials and channels). In order to reduce dimensionality [18], we 
calculated 9 features per epoch, which were used as input both 
for LatentSVDD and classification. For this purpose, the 
interval [0 500ms] was divided in a total of 10 non-overlapping 
intervals, each with a length of 50ms. We then calculated the 
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mean signal in each of these intervals and subsequently, the 
gradient between these means. 

In order to test the separability of classes, we classified the 
EEG data using shrinkage LDA, sampling 30 times from the 
data set and dividing the data set into 75% training data and 
25% test data. Classification was run using (a) behavioral 
labels, and (b) the labels inferred by LatentSVDD. Our goal 
was to apply LatentSVDD in order to divide the trials 
according to whether an error was processed on a neural level 
or not. 

IV. RESULTS 

A. Class Re-assignment and Anomalous Trials 

On average, LatentSVDD flipped the labels for 35.94% of 
all trials. This resulted in a neural error rate of 31.18%, 
compared the lower behavioral error rate (18.05%). Based on 
the anomaly score that LatentSVDD returns for each trial, we 
rejected a small percentage of trials for each participant. For 
the majority of participants, there are only few trials with high 
anomaly scores, with a steep drop-off compared to the 
remainder of the trials (cf. Figure 3). Visual inspection revealed 
that the results are plausible from a neuroscientific point of 
view: the rejected trials show typical artifacts (eye blinks, 
voltage drifts with respect to all electrodes or a single 
electrode) that have escaped the conventional artifact rejection 
run prior to applying LatentSVDD. 

Figure 3.  Sorted anomaly scores for each data point of each participant. 

B. Quantitative Assessment 

We quantified the benefits of LatentSVDD using KTA 
scores and linear classification (LDA). Both measures confirm 
that the labels assigned by LatentSVDD allow a much better 
separation of the data than behavioral labels for all 20 
participants. As can be seen in Figure 4.A, LatentSVDD 
renders the classes clearly more distinct from each other, 
reflected in higher AUC values (0.95 vs. 0.60). This is 
accompanied by substantially higher KTA score for all 
participants, as can be seen in Figure 4.B.  

C. Neurophysiological Assessment 

While AUC and KTA scores help quantify the positive 
effect of LatentSVDD, we found the results also to be 
neurophysiologically sound. In the following, we discuss this 
for our methodology at the example of participant 4. The 
different steps of our methodology are visualized in Figure 5.  

Figure 4.  A. Separability of the two classes by classification (AUC values), 

B. Label-data matching as measured by KTA scores, as measured before and 

after running LatentSVDD (x-axis vs. y-axis). 

Figure 5.  Time course at electrode position Cz, [-200, 600ms] relative to the 

response (participant 4), with trials grouped in different classes: (a) before 

LatentSVDD (behavioral labels; green/red: correct/incorrect response), (b) 

latent states revealed by LatentSVDD, (c) suggested re-assignment of labels, 
(d) after LatentSVDD (denoised labels). 

 

Each plot shows the same data (time course at electrode Cz, 
participant 4), yet grouped in different classes. Classes seem 
relatively similar if divided into correct (green) and incorrect 
responses (red), based on behavioral data (Figure 5(a)). 

In contrast, the labels retrieved by LatentSVDD reveal clear 
differences, with an error positivity (red) that is much more 
pronounced than before (Figure 5(d)). The inner workings of 
LatentSVDD are visualized in the middle of Figure 5: First, the 
method assigns each trial to a latent variable / brain state, as 
can be seen in Figure 5(b). The state with the highest amplitude 
(purple) corresponds to typical error processing, with a clear 
positive component. A clear positivity also occurs in two other 
states (blue and pink), yet less pronounced and with different 
latencies. In contrast, no error has been processed in the fourth  
state (black). Based on the latent variable, a subset of trials is 



then re-assigned (Figure 5(c)). Red and green indicate labels 
that are retained, orange and light green signify trials where the 
labels were switched (orange to red, light green to green). As 
can be seen, the re-assignment makes sense intuitively. Finally, 
Figure 5(d) shows the denoised data, which reveals a more 
pronounced error positivity (red) than before. While the latent 
states themselves are highly subject-specific, we find similar, 
neurophysiologically plausible results for the majority of 
participants. 

V. DISCUSSION 

In this paper, we propose a measure for label noise, using  
KTA scores as well as a novel learning approach called 
LatentSVDD. The latter allows us to detect anomalies and 
model latent variables, which can be used to reveal latent brain 
states. We consider it a premier choice if labels are sparse, 
absent or systematically unreliable. In this paper, we 
demonstrate its effectiveness on an EEG data set, recorded 
during a test of visual attention. We show that the classes 
inferred by LatentSVDD lead to better label-data matching and 
a substantially higher separability of the data (assessed with 
linear classification; rise in the mean AUC from 0.60 to 0.95). 
Visual inspection of the data shows that the class assignments 
by our method are neurophysiologically plausible, leading to 
more easily interpretable brain states that may subsequently 
allow for a better and more meaningful experimental 
evaluation. Interestingly, the neural error rate revealed by 
LatentSVDD is much higher than the behavioral error rate 
(31.18% vs 18.05%), indicating that the brains of the 
participants had processed errors more often than they actually 
happened. Thus, our approach allows for a better and more 
meaningful experimental evaluation, not only of the neural, but 
also of the behavioral data. 
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