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Abstract

We develop a variational inference (VI) scheme for the recently proposed Bayesian
kernel support vector machine (SVM) and a stochastic version (SVI) for the
linear Bayesian SVM. We compute the SVM’s posterior, paving the way to apply
attractive Bayesian techniques, as we exemplify in our experiments by means of
automated model selection.

1 Introduction

There has recently been significant interest in utilizing max-margin based discriminative Bayesian
models for various applications. For example [1]] used max-margin based Bayesian classification to
discover latent semantic structures for topic models, [2] to build efficient matrix factorization methods
or [3] to develop new promising approaches to Hidden Markov models. All these approaches apply
a Bayesian reformulation of the classic SVM [4] developed by [5]]. [6] extended the model to the
nonlinear case and showed that this leads to improved accuracy compared to standard methods like
SVMs and Gaussian process (GP) classification. But their inference method has the drawback that it
partially relies on point estimates of the latent variables and their proposed inference methods are not
applicable to large datasets due to the high computational complexity.

We overcome these problems by developing an approximate Bayesian approach proposing a fast
inference method based on variational inference. Since we can give a full approximate posterior our
approach allows for the use of Bayesian techniques to SVMs on real world datasets as e.g. computing
class probabilities, errorbars and automated hyperparameter search. Additionally, the proposed
algorithms are much faster than the ones used by [6]. We exemplify this in our experiments, showing
that the approach indeed leads to fast automated SVMs while directly giving uncertainty prediction
without using additional heuristic methods like Platt [7]. In the end we give a short outline on how
we aim to generalize and improve the model.

2 The Bayesian SVM

Let D = {;,y;}._, be n observations where z; € R is a feature vector with corresponding label
y; € {—1,1}. The SVM consists of finding the optimal score function f by solving the optimization
problem
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where R is a regularizer function and 7 a hyperparameter. The loss max (1 — y; f(«;), 0) is called
hinge loss. The classifier is defined as sign(f(z)).

[5] developed a Bayesian formulation of the linear SVM (i.e. f(z) = ('x) and showed that
estimating the mode of the pseudo-posterior

p(BID) o< [ [ Lwilzi, B)p(8)

i=1
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is equivalent to (T). p(8) denotes a prior chosen such that log p(8) « —2vR(). In the following we
use the prior 3 ~ N (0, X) but note that our method can be easily extended to other priors. L denotes a
pseudolikelihood fulfilling log L o< —2 max (1 — y; f(2;), 0). It was shown in [3] that by introducing
latent variables A := (\1,...,\,) we can express L in terms of a normal variance-mean mixture,
where we implicitly impose the improper prior p(A) = L[g,)(A) on A. Writing X € R**"™ for the
matrix of data points and Y = diag(y), the full conditionals of this model are given by

BINE, D ~N(BZ(A ! +1), B),
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with Z = XY and B~! = ZA~'ZT + ¥, A = diag()\) and GZG denotes a generalized inverse
Gaussian distribution.

By using the ideas of Gaussian processes [8]], [6] developed a kernelized version of this model. To
this end, they assume that a continuous decision function f(z) is drawn from a zero-mean Gaussian
process GP(0, k), where k is a kernel function. The random Gaussian vector f = (f1,..., fn)
corresponds to f(z) evaluated at the data points. We substitute the linear function ;] 3 by f; in the
problem (1) and obtain the conditional posterior

fIND ~N(CY (AT +1), C),

with C~! = A=! + K. For a test point z, the conditional predictive distribution for f, = f(z.)
under this model is

fA 2, D ~ N (B (K + M) 7Y (L4 A), ko — k(K +A) M), (3)

where K := k(X, X)), k. := k(X,z,), kwx := k(x4,x,) are the kernel matrices. Note that the
conditional posteriors are all dependent on the local latent variable A;.

3 Fast Inference for the Bayesian SVM

We follow the mean field variational inference (MFVI) approach and apply stochastic variational
inference (SVI) [9] to approximate the posterior of the Bayesian SVM. We extend the approach from
[LO] for the Bayesian linear SVM and propose a novel variational inference method for the Bayesian
kernel SVM.

Variational Inference

We first consider the linear case. We aim to approximate the posterior p(8, A\|D) = ¢(8,\) =
q(B) TTi—, g(\:) of the global variable 3 and local variables \;, i = 1, ..., n. To this end we choose
the variational distributions in the same family as the full conditionals,

Q(Ai) = ng(%? 1, ai)
a(B) = N(u,¢),

where o; > 0, p € R4, (e Rdxd (positive definite) are the free parameters. Since the variational
distributions are in the exponential family the coordinate ascent variational inference (CAVI) updates
are given by the expected natural parameters [11]]. The local updates are given by

ai =By [(1 =2 B)?] = (1 — 2] w)* + 2 Czi,
and the natural parameter update for the variational Gaussian are given by

m=Ey [ZOT+ 1] = Z(a™ % + 1),
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and

N = —%EQ(A) [ZA 27 + 571 = —% (Z(A—%)ZT + 2—1) :

!The standard mean and covariance parameter of our parametrization (@) can be recovered by ¢ = — %n; !
and pu = (n1.



where A = diag(«) and @ = (@) 1<i<n.

For the Bayesian kernel SVM we follow again the MFVI approach and choose the varia-
tional families according to the full conditionals (2. The CAVI updates can be computed analogously
to the linear case,

i = (1= yips)* + Cii
m=Y(@?+1)

1
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where 7, and 72 are the natural parameters of the variational Gaussian. The VI scheme for the
Bayesian kernel SVM is shown in Algorithm [2]in the appendix.

Stochastic Variational Inference

The batch variational inference scheme for the Bayesian linear SVM can be directly extended to a
stochastic version (see Algorithm[T]in the appendix). We show in our experiments that this leads to a
great speedup. We use an adaptive learning rate scheme [12] in the SVI algorithm.

Unfortunately, SVI for the Bayesian kernel SVM cannot be applied in a straight forward manner.
The problem is that the probabilistic model does not have a set of global variables. Both the latent
variables A and the latent GP f correspond to the data points, i.e. they are local variables. To
overcome this problem we plan in future work to use instead an inducing point GP with global sparse
prior [13]] that would lead to an appropriate model for SVI.

4 Predictive Distributions

We use the approximation of the posterior to compute the predictive distribution and class membership
probabilities. Details are given in the appendix. The class membership probability distributions are

Linear BSVM: (Y« = 1|24, D) = @ __me i
: PlYsx = L| T, ~ (EIC*‘T* +1
ko Kt
Kernel BSVM: « = 1]z,, D) = P ’
erne p(y |+, D) (k**—&—kz;r (K—lg*K—l—K_l)k*+1)

where ®(.) denotes the probit link function (the normal cumulative density function).

5 Hyperparameter Optimization

We estimate the hyperparameters from the data by maximizing the marginal likelihood p(y|X, h)
(empirical Bayes [[14]). We follow an approximate approach [[15 9] and optimize the fitted variational
lower bound L(h) over h. We update the hyperparameters simultaneously with the variational
parameters. To this end we add a hyperparameter optimization step after the variational updates in
the SVI scheme,

R — =1 4 ﬁtvhﬁ(a(t_l),u(t_l),C(t_l),h)~ 5)

6 Experiments

In the following we apply our method to synthetic and real world data and show that they are much
faster than the competing methods while having similar prediction performance. We show that
our method quickly finds the optimal hyperparameters. We experiment with the batch variational
inference methods and the SVI method for the Bayesian kernel SVM and compare against standard
SVM (LibSVM [16]), MCMC-BSVM (Gibb’s sampling based on [6]) and EP-based Gaussian Process
Classification [8]].

Synthetic Experiment for the Bayesian Linear SVM

We experiment on synthetically generated datasets of different sizes with known underlying parameter
5. In Fig.[I|we plot the estimation error of 8 and the time.
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Figure 1: Performance and convergence time for the Linear SVM methods as function of dataset size.
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Figure 2: Mean % error as function of the hyperparamter. Left: Bayesian Linear SVM. Right:
Bayesian Kernel SVM.

Automated Model Selection

For the Bayesian linear SVM we experiment on a synthetic dataset of 10,000 data points and estimate
the regularization constant by applying (5) and compare against grid search (grid of 1000 points) for
the standard SVM. For the Bayesian kernel SVM we experiment on the Sonar dataset (see Table [T)).
In Fig. 2] we plot the prediction error as function of the hyperparameters.

Prediction Performance of the Bayesian
Kernel SVM on Real World Datasets

For all methods we use a radial basis function kernel and estimate the kernel parameters by using
our automated model selection approach (3)) for VI-BSVM and cross-validation for the competitors.
We experiment on different standard benchmark datasets and report the prediction performance in
Table[T] Our method took between 20 and 35 seconds for the each dataset (including auto tuning of
the hyperparameters).

Data set N d VI-BSVM  LibSVM  GPC
Sonar 208 60 12.5 13.5 19.5
Crabs 200 7 1.0 1.0 3.1
Pima 768 8 22.8 24.7 22.8
USPS 3vs5 1540 256 2.0 1.6 23

Table 1: Mean % error from 10-fold cross-validation.

7 Conclusion

We proposed a new inference method for the Bayesian SVM that scales to large datasets and allows
for approximating the full posterior. Our approach lets us automatically tune the hyperparameters of
the SVM and leads to class membership probabilities. In future work we aim to make our inference
method even faster by applying the concept of GPs for big data [13]]. We plan to further extend the
Bayesian SVM model to account for correlations between data points building on ideas from [17].
Additionally, we aim to embed the model into more general frameworks of normal variance-mean
mixtures.
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8 Appendix

A SVI Scheme for the Bayesian linear SVM

Algorithm 1 SVI for the Bayesian linear SVM

1: set the learning rate schedule p; appropriately
2: initialize 71, 12
3: while not converged do
get S = minibatch index set of size s
update a; = (1 — 2F )2 +2I¢2 VieS
compute As = diag(a,, i € S)

1

compute 7j; = 2 Zs(ag? +1)
_1
compute 7z = —3 (EZS(ASZ)ZE + Z_1>

® X U0k

9: update 1 = (1 — pg)m1 + pﬂ?l
10: update 15 = (1 — py)n2 + peije

11: compute ( = 7%772_1
12: compute u = (11
13: return ay,...,qn, 1, ¢

B Batch VI Scheme for the Bayesian kernel SVM

Algorithm 2 Batch VI Scheme for the Bayesian kernel SVM
1: initialize y,
2: while not converged do
3: update o; = (1 — yi,ui)Q + G Vi

4 compute A = diag(a)

5 compute 7; = Y (a~2 4 1)

6: compute 72 = — 3 (A’% + K’l)
7 compute { = —37; !

8 compute p = (M

9: return aq,...,0Qn, 14, C

C Predictive Distributions

We use the approximation of the posterior to compute the predictive distribution and class membership
probabilities. Compared to (3)) we do not condition on A and use the variational distributions obtained
by our inference method. Let o*, uu*, (* be the variational parameters and z, € R¢ a new test point.

Bayesian Linear SVM

Let ¢*(8,\) = p(8, \|D) be the variational distribution obtained by SVI. The predictive distribution
can be approximated by

p(fulze D) ~ / p(F1B)q" (B, NAfdA = N(fus o1, 21 "),

This leads to an approximation of the class membership probability,

T, %
. = 1o, D) ~ [ @(flfledt. = (22 ).

where ®(.) denotes the probit link function (the normal cumulative density function).



Bayesian Nonlinear SVM

Let ¢*(f, A\) = p(f, A|D) be the variational distribution obtained by SVI. Using standard identities
for Gaussian processes we obtain an approximation to the predictive distribution,

p(f.lw., D) ~ / PUEIF)G (FNAFAN = N (fis koK e + k] (KK — K )

The class membership probability can be approximated by

k*Kfl,u* )

p(ys = 1|z+, D) = /‘I’(f*)Q(f*|33*)df* =¢ (k** + kT (K-1¢*K—1— K-k, +1
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