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Abstract

Previous work on inference for dynamic mixture models has so far been directed
to models that follow a simple Brownian motion diffusion over time and pursued a
batch inference approach. We generalize the underlying dynamics model to follow
a Gaussian process, introducing a novel class of dynamic priors for mixture models.
Further, we propose a stochastic variational inference scheme and compare our
approach to previous solutions in terms of runtime complexity and test error.

1 Introduction

Despite their extraordinary capabilities to describe complex behavior in data, dynamic mixture models
are not as heavily used as their static counterparts. Introducing dynamics to mixture models allows
us to keep track of mixture components that are subject to a drift. Examples include the analysis of
stock market data or time-stamped document collections (i.e. dynamic topic models) and weather
forecasting, among others. In our approach, the underlying dynamics are modelled via Gaussian
processes (GPs), opening up for a wide range of dynamic priors in mixture models and models
of mixed membership. These include Brownian motion, the Ornstein-Uhlenbeck process (being
the continuous AR(1) model) and periodic process priors. Further, we develop scalable inference
methods for this new model class.

2 Dynamic Mixture Model
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Figure 1: A simple GP dynamic
mixture model.

We study a novel modelling class introducing new kinds of
dynamic priors for mixture models on time series. The model
under study is a mixture model of K D-dimensional Gaussian
distributions whose time-dependent dynamics are governed by
a GP as described by the generative process:

1. draw βk,1:T ∼ GP(0,K) for all k = 1, . . . ,K

2. for all t = 1, . . . , T draw θt ∼ DirK(α)

3. for all n = 1, . . . , N

(a) draw a component: zn ∼ Mult(θtn)

(b) draw data xn ∼ N (βzn,tn , σ
2
XI),

where βk are mixture components, as given by a zero-mean
GP prior with kernel function k(·, ·) and associated covariance
matrix K. θt denotes the prior over mixing proportions for
each data point at time t and σ2

0 , σ
2
X are variance parameters

and tn is the observed time-stamp associated with observation
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xn. We give a graphical representation of the model in Fig. 1.
We emphasize that with the flexibility to easily employ different kernel functions, we are able to
capture a wide range of dynamic behavior of the data (e.g. linear and non-linear drifts, periodicity
and jumps). Using e.g. a Wiener kernel function1 implies that the mixture component means underlie
a Brownian motion diffusion over time leading to a hierarchical model in the spirit of [1]. [2] describe
a class of dynamic mixture models based on linear dynamics, while we stick to the idea of random
walk state-space models and generalize those using GPs.

3 Related work

Our main focus lies on efficient inference in the described model. Bayesian inference in dynamic
mixture models so far mainly relies on either MCMC sampling techniques (e.g. [3, 2]) or variational
methods (using a variational interpretation of the Kalman-Filter (VKF) as in [4, 1]). All of these are
batch inference algorithms and we improve upon them in terms of computation time by following
a stochastic gradient descent approach. Recently, [5] introduced a stochastic MCMC sampling
approach but is restricted to the enclosed case of models based on Brownian motion diffusion.

4 Inference

We develop both a batch and stochastic variational inference scheme for our model. While [1]’s VKF
approach is custom-tailored to the Brownian motion diffusion case, our GP based approach does not
suffer from this limitation.

4.1 Batch model

From the above definitions we construct a lower bound on the evidence (ELBO) by following
standard variational mean field theory [6]. As our model is fully conjugate, we are able to derive full
conditionals for all variables involved. We introduce variational distributions on each θt, q(θt|λt) =
DirK(λt) and each zn, q(zn|φn) = Mult(φn). Further, we place a T -dimensional variational
distribution on the mixture components time series, q(βk) = NT (mk, Sk)2. Doing so yields a batch
variational inference algorithm with the following ELBO objective and parameter updates:

L = Eq[log p(θ, β, z, x)]− Eq[log q(θ, β, z)]

φnk ∝ exp

{
ψ(λtn,k)− ψ

(∑
k′

λtn,k′

)
− 1

2σ2
X

(
(xn −mtn

k )T (xn −mtn
k ) +D(Sk)tn,tn

)}
(1)

λtk = α+
∑
n

1[t=tn]φnk (2)

mk =

(
K−1TT +

1

2σ2
X

Φk

)−1
1

2σ2
X

Ξk, Sk =
(
K−1TT + Φk

)−1
(3)

where KTT is the covariance function evaluated on all observed time stamps, 1[·] is the indicator
function. Φk is a diagonal T × T -matrix with (Φk)t,t =

∑
n 1[t=tn]φnk and Ξk is a T ×D-matrix

with the t-th row being
∑
n 1[t=tn]φnkx

T
n . Note that we are assuming independence in the individual

dimensions of xn and so are able to handle all dimensions simultaneously by using matrix algebra
where appropriate.

4.2 Scalable model

To scale to considerably larger amounts of data we follow the ideas in [7] and consider a set of
inducing variables, β̂, which contain function values3 at inducing locations z = {zm}Mm=1 with

1Wiener kernel function: k(ti, tj) = min(ti, tj)
2Note that we have to handle each dimension separately in this case and assume independence between

dimensions.
3We utilize the function view on GPs by assuming that the mixture component means are functions of time.
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M � N . We will use these to construct a lower-rank approximation to the underlying GP. To this
end, we employ a prior on β̂, p(β̂) = N (0,KMM ) and, using standard GP results, we obtain

p(β(k)|β̂(k)) = N (KNMK
−1
MM β̂

(k), K̃) (4)
with KMM the matrix resulting from evaluating the covariance function between all M inducing
points. Here KNM is the cross-covariance between the data points and the inducing points and K̃
is given by K̃ = KNN −KNMK

−1
MMKMN . Applying Jensen’s inequality on p(xn|zn, tn, β) and

computing expectations under Eq. 4, we obtain

log p(xn|zn = k, tn, β̂) = logEp(β|β̂) [p(xn|zn, tn, β)]

≥ Ep(β|β̂) [log p(xn|zn, tn, β)]

= logN (ktn,MK
−1
MM β̂

(zn), σ2
X)− 1

2σ2
X

k̃tn,tn , L1 (5)

where ktn,M is the n-th row of KNM . Thus, after incorporating the remaining parts of the model,
our final objective is given by

L2 = Eq

[∑
t

(log p(θt|α)− log q(θ|λ)) +
∑
n

log p(zn|θtn)− log q(zn|φn) + L1 + log p(β̂)− log q(β̂)

]
.

Here, q(β̂) =
∏
kN (β̂(k)|mk, Sk) is the variational distribution on β̂, i.e. the variational parameters

m and S now govern the approximating GP defined by the inducing function values β̂. We now
proceed by randomly selecting a subset S of size S of the data and then updating local variables for
this mini-batch. We use these local updates for constructing a noisy gradient on the global variables
leading to a stochastic gradient descent scheme.

Updating local variables The parameter updates for local variables are similar to Eq. 1, differing
only in the likelihood term which is now an expectation ofL1 (Eq. 5) under the variational distribution,

φnk ∝ exp

{
ψ(λtn,k)− ψ

(∑
k′

λtn,k′

)
− 1

2σ2
X

(
(xn − µk,tn)T (xn − µk,tn) + tr(SkΛtn) + k̃tn,tn)

)}
where µk,tn is given by ktn,MK

−1
MMmk, Λtn = K−1MMk

T
tn,M

ktn,MK
−1
MM and tr(·) is the trace

operator.

Updating global variables The global variables in our model are θt and β̂k. For each θt we can
make use of the fact that the natural gradient is identical to the standard coordinate ascent updates
(Eq. 2). The update in iteration i is then

λ
(i+1)
t,k = λ

(i)
t,k + ρi

(
α+

N

S

N∑
n=1

1[t=tn]φn,k

)
where ρi is a decreasing learning rate.Updating the parameters mk and Sk follows along these lines.
We can use the fact, that the gradient in expectation parameters automatically yields the natural
gradient in canonical parameters in any exponential family distribution [8]. Thus we reparameterize
q(β̂(k)|mk, Sk) by η(1)k = S−1k mk and η(2)k = − 1

2S
−1
k and construct the gradients of L2) in terms

of expectation parameters to obtain the natural gradient. These are given by
∂L2

∂mk
=
N

S

∑
n

1[t=tn]φnkK
−1
MMkM,tnxn − Λmk

∂L2

∂Sk
=

1

2
S−1k −

1

2
Λ

where Λ = K−1MM + 1
σ2
X

∑
n φnkK

−1
MMkM,tnk

T
M,tn

K−1MM . Updating the canonical parameters

η
(1)(i+1)
k = η

(1)(i)
k + ρi

∂L2

∂mk

η
(2)(i+1)
k = η

(2)(i)
k + ρi

∂L2

∂Sk
completes the inference procedure.
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(a) Simple model.

103 104 105

# of data points

5000

10000

15000

20000

e
x
e
cu

ti
o
n
 t

im
e
 (

s)

Computation time

VKF model

GP model

SVI GP model

(b) Complex model.

Figure 2: Runtime statistics.
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Figure 3: Test error statistics.

5 Experiments

We evaluate our approach on synthetic data generated according to our generative model with Wiener
kernel function and use two different settings (T = 10, D = 5,K = 5 and T = 100, D = 50,K =
25). For both, we measure statistics for a growing number of observations N and collect run-time
(Figures 2a and 2b) and test error statistics (Figures 3a and 3b). As would be expected, the VKF and
the batch GP model perform with similar performance, although the batch GP model is clearly faster
in terms of computation time. This can be explained by the need of numerical optimization in the
VKF model, while the GP model uses a direct coordinate ascent update. For the simpler problem, the
SVI GP model performs slightly less accurate in terms of predictive quality. As it uses a lower rank
approximation to the resulting covariance matrix of the full GP model this is again expected behavior.
With increasing model complexity, the full GP model is still much faster than the VKF, however, the
SVI GP model benefits from using a lower-rank approximation and its property to reach an optimum
after having processed much less data points than needed by a batch algorithm.

6 Discussion and Future Work

We explore new kinds of dynamic priors for Bayesian dynamic mixture models and thereby study a
new modeling class. This opens up for utilizing well known dynamic priors in context of mixture
models (e.g. the OU process). Further, we propose a stochastic variational inference scheme and
find that it is superior to the VKF in terms of computation time making it applicable to huge data
sets. Our aim is to apply our findings to more complex models of mixed membership, especially
topic models [9], leading to a truly scalable inference scheme for dynamic topic models and to the
possibility of incorporating a broader range of prior assumptions on the type of diffusion for topics.
Additionally, this formulation also allows to put priors on any hyperparameters as well, leading to a
model that can model known phenomena in time series analysis such as jumps, heteroscedasticity
and stochastic volatility.
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