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Problem setting

The goal in statistical learning theory is to find a classifier
g : Rd → {0, 1}, predicting the correct class y of an observation x ∈ Rd ,
based on data (x1, y1), . . . , (xn, yn).

Because we cannot learn a reasonable classifier, if no assumption is
imposed on the relationship between the data and the test observation
(x , y), we require:

Assumption

Let the data Dn := (xi , yi )
n
i=1 and test observation (x , y) be independently

drawn from one and the same probability distribution P.

Notation: we denote the random variables associated to (xi , yi ) and (x , y)
by capital letters, i.e., (Xi ,Yi ) and (X ,Y ), respectively.
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Bayes classifier

A classifier errs if g(X ) 6= Y so that L(g) := P(g(X ) 6= Y |Dn) is the
probability of error of g .

The Bayes classifier, defined as

g∗(x) := argmin
g

L(g) =

{
1, if P(Y = 1|X = x) > 1

2
0, otherwise ,

(1)

is, by definition, the most accurate classifier in average. If P is known,
the Bayes classifier may be computed.

However, most often P is unknown in practice and needs to be
approximated on base of the data:

L̂n(g) :=
1

n

n∑
i=1

I{g(Xi )6=Yi}︸ ︷︷ ︸
empirical error

≈ L(g)︸︷︷︸
error probability

.
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Empirical Risk Minimization (ERM)

The Bayes classifier is thus roughly approximated by:

Empirical risk minimization (ERM)

g∗ := argmin
g∈C

L̂n(g)

In comparison to the Bayes classifier, ERM has two limitations

1 the empirical error L̂(g) is minimized, rather than the error probability
L(g)

2 the minimization is over a sub-class C of classifiers, to avoid
overfitting.
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What is “lost” by the ERM approximation?

The sub-optimality of ERM is measured by L(g∗n )− L(g∗), i.e., the
differences of the error probabilities of ERM and the Bayes classifier. We
thus need to analyze L(g∗n )− L(g∗).

To this end, denote the most accurate classifier in the class C by
g∗C := argming∈C L(g). Clearly, we may write:

L(g∗n )− L(g∗) = L(g∗n )− L(g∗C )︸ ︷︷ ︸
called “estimation error”

+ L(g∗C )− L(g∗)︸ ︷︷ ︸
called “approximation error”

.

Approximation error: not controllable; may converge arbitrarily slowly
when n→∞.

Estimation error: controllable; we will prove: converges to zero at a rate
of O(

√
1/n).
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Bounding the estimation error

Lemma

L(g∗n )− L(g∗C )︸ ︷︷ ︸
estimation error

≤ 2 sup
g∈C

∣∣∣L̂n(g)− L(g)
∣∣∣ .

Proof.

L(g∗n )− L(g∗C )

= L(g∗n )− L̂n(g∗n ) +
(

L̂n(g∗n )︸ ︷︷ ︸
≤L̂(g∗C )

− L(g∗C )
)

≤ 2 sup
g∈C

∣∣∣L̂n(g)− L(g)
∣∣∣ .
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Consequences of the Lemma

The above lemma states that upper bounds on supg∈C |L̂n(g)− L(g)|
automatically provide us with upper bounds on the sub-optimality of the
ERM classifier g∗n within C, that is, a bound for the estimation error
L(g∗n )− L(g∗C ). This explains why...

The classical task in statistical learning theory is

to derive upper bounds on supg∈C

∣∣∣L̂n(g)− L(g)
∣∣∣, i.e.,

sup
g∈C

∣∣∣L̂n(g)− L(g)
∣∣∣ ≤ bound(n)

with bound(n)→ 0 when n→∞ at a reasonable speed (usually
O(
√

1/n)).

Warning: pointwise convergence, i.e., ∀g ∈ C : |L̂n(g)− L(g)| → 0 when

n→∞ is not enough! We need that
∣∣∣L̂n(g)− L(g)

∣∣∣ convergences

uniformly in C.
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What is coming up?

We bound P(supg∈C |L̂n(g)− L(g)| ≥ t) in two steps:

1 showing that supg∈C |L̂n(g)− L(g)| is “concentrated”, i.e., it is,
with high probability over the draw of the data, very close to its mean
E supg∈C |L̂n(g)− L(g)| (by “McDiarmid’s inequality”)

2 showing that E supg∈C |L̂n(g)− L(g)| → 0 when n→∞ at rate

O(
√

1/n) (by “Vapnik-Chervonenkis theory”)

This is justified by the following decomposition:

sup
g∈C
|L̂n(g)− L(g)| ≤∣∣∣ sup
g∈C
|L̂n(g)− L(g)| − E sup

g∈C
|L̂n(g)− L(g)|

∣∣∣︸ ︷︷ ︸
≤ bound (Step 1)

+E sup
g∈C
|L̂n(g)− L(g)|︸ ︷︷ ︸

≤ bound (Step 2)
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Outline

To reach step 1, we will introduce the theory of concentration
inequalities, i.e., inequalities of the form: for a random variable Z and
any real number t > 0,

P(|Z − EZ | ≥ t) ≤ bound(t, n) .

To this end, we will step by step prove:

Markov’s inequality

Chernoff’s inequality

at the very end, reaching the very powerful concentration inequality of
McDiarmid (1989), which gives the required result of step 1.
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Markov’s inequality
The starting point of all concentration inequalities is the following simple,
yet very useful result:

Proposition (Markov’s inequality)

For any positive random variable Z and any real number t > 0,

P(Z ≥ t) ≤ EZ

t
.

Proof.

The core idea of the proof is to consider the random variable
Zt := tI{Z≥t}. Note that Zt is positive and it holds Zt ≤ Z with
probability one as well as, per construction, EZt = tEI{Z≥t} = tP(Z ≥ t).
Thus it follows

P(Z ≥ t) =
EZt

t
≤ EZ

t
,

which was to show.

Marius Kloft and Klaus-Robert Müller (TU Berlin) Statistical Learning Theory October 23, 2012 11 / 33



From Markov’s inequality, we easily prove:

Proposition (Chernoff’s inequality)

For any random variable Z and any t > 0,

P(Z ≥ t) ≤ min
s∈R

MZ (s)

est
,

where MZ (s) = EesZ is the moment-generating function of Z .

Proof.

Note that by Markov’s inequality P(Z ≥ t) = P(esZ ≥ est) ≤ EesZ
est , which

was to show.
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Discussion (Chernoff’s inequality)
The moment-generating function (MGF) occurring in Chernoff’s
inequality is, for many distributions, well known from the literature; e.g.:

Example (MGF of Gaussian random variables)

The MGF of a Gaussian random variable Z with expected value E (Z ) = 0
and variance σ2 is given by: for any s ∈ R,

MZ (s) = e
1
2
σ2s .

Most relevant for us (because 0 ≤ L̂n(g), L(g) ≤ 1) are bounded variables:

Lemma (Höffding’s lemma. For the proof, see lecture notes)

A random variable Z is bounded, if there exist constants a, b > 0 such
that P(a ≤ Z ≤ b) = 1. The MGF of a bounded random variable Z with
expected value E(Z ) = 0 is upper bounded by: for any s ∈ R,

MZ (s) ≤ es
2(b−a)2/8 .
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McDiarmid’s inquality
We are now ready to prove the main concentration inequality of this
lecture.

Assumption (Bounded difference assumption)

Let A be some set; a function f : An → R satisfies the bounded difference
assumption, if there exist real numbers c1, . . . , cn > 0 so that for all
i = 1, . . . , n,

sup
z1,...,zn,z ′i ∈A

|f (z1, . . . , zn)− f (z1, . . . , zi−1, z
′
i , zi+1, . . . , zn)| ≤ ci .

In words, if we change the ith variable while keeping all the others fixed,
the value of the functionv g does not change by more than ci .

Theorem (McDiarmid’s inequality)

Under the bounded difference assumption, it holds, for all t > 0,

P(|f (Z1, . . . ,Zn)− Ef (Z1, . . . ,Zn)| ≥ t) ≤ 2e−2t
2/

∑n
i=1 c

2
i .
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Proof (McDiarmid’s inequality)

Proof.

Write f ≡ f (Z1, . . . ,Zn), V := f − Ef , and V =
∑n

i=1 Vi with
Vi := E[f |Z1, . . . ,Zi ]− E[f |Z1, . . . ,Zi−1], where E[f |Z1, . . . ,Zi ] denotes
the expected value conditioned on Z1, ...,Zi .

Changing the value of Zi can, by the bounded difference assumption,
change the value of Vi by at most ci . Moreover E[Vi |Z1, . . . ,Zi−1] = 0.
Thus, by Höffding’s lemma,

E[esVi |Z1, . . . ,Zi−1] ≤ es
2c2i /8 . (2)
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Proof continued.

Hence, by Chernoff’s inequality,

P(f − Ef ≥ t)

≤ min
s∈R

e−stEes(f−Ef ) = min
s∈R

e−stEes
∑n

i=1 Vi

= min
s∈R

e−stEE[es
∑n

i=1 Vi |Z1, . . . ,Zn−1]

= min
s∈R

e−stEE[es
∑n−1

i=1 ViE[esVn |Z1, . . . ,Zn−1]|Z1, . . . ,Zn−1]

(2)

≤ min
s∈R

es
2c2i /8−stEE[es

∑n−1
i=1 Vi |Z1, . . . ,Zn−1]

≤ . . . (repeating the argument (n − 1) times)

≤ min
s∈R

ens
2
∑n

i=1 c
2
i /8−st .
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Proof continued.

ens
2
∑n

i=1 c
2
i /8−st is minimized for s := 4t/

∑n
i=1 c2

i , thus giving

P(f − Ef ≥ t) ≤ e−2t
2/

∑n
i=1 c

2
i .

Analogously, repeating the argument for the function −f , we obtain the
corresponding left-sided inequality

P(f − Ef ≤ −t) = P(−f − E(−f ) ≥ t) ≤ e−2t
2/

∑n
i=1 c

2
i .

Combining both results gives the claimed result.
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Consequences for Learning Theory

Corollary

Let C be a class of functions. Then, for any t > 0,

P

(∣∣∣∣ sup
g∈C
|L̂n(g)− L(g)| − E sup

g∈C
|L̂n(g)− L(g)|

∣∣∣∣ ≥ t

)
≤ 2e−2nt

2
.

Proof.

Put Zi := (Xi ,Yi ), i ∈ N, and f (Z1, . . . ,Zn) := supg∈C |L̂n(g)− L(g)|.
Then f satisfies the bounded difference assumption with ci = 1/n for all
n ∈ N. The claimed inequality thus follows from McDiarmid’s
inequality.
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The big picture

Recall from the beginning of this lecture that our overall goal is to bound
the estimation error of ERM and that it holds

L(g∗n )− L(g∗C )︸ ︷︷ ︸
estimation error

≤ 2 sup
g∈C

∣∣∣L̂n(g)− L(g)
∣∣∣ .

By the corollary from the previous slide, with probability 2e−2nε
2
,

sup
g∈C

∣∣∣L̂n(g)− L(g)
∣∣∣∣∣∣ sup

g∈C
|L̂n(g)− L(g)| − E sup

g∈C
|L̂n(g)− L(g)|

∣∣∣︸ ︷︷ ︸
≤ ε (by McDiarmid)

+E sup
g∈C
|L̂n(g)− L(g)|︸ ︷︷ ︸

still left to bound!

We will bound the expected value E supg∈C |L̂n(g)− L(g)| using
Vapnik-Chervonenkis theory.
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Vapnik-Chervonenkis Theory

To bound the expected value E supg∈C

∣∣∣L̂n(g)− L(g)
∣∣∣ we proceed in three

steps:

1 relating E supg∈C

∣∣∣L̂n(g)− L(g)
∣∣∣ with Rn(C), the so-called

Rademacher complexity of the class C
2 relating Rn(C) with the so-called VC shattering coefficient Sn(C)

3 relating Sn(C) with the VC dimension V

4 computing V for specific classes C.
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Step 1: relating E supg∈C

∣∣∣L̂n(g)− L(g)
∣∣∣ with Rn(C)

Definition (Rademacher complexity)

The (empirical) Rademacher complexity of a function class C is defined as

Rn(C) := Eς sup
g∈C

∣∣∣∣∣1n
n∑

i=1

ςi I{g(Xi )6=Yi}

∣∣∣∣∣ ,
where ς = (ςi )i=1,...,n is an i.i.d. family of Rademacher variables, i.e.,
P(ςi = +1) = P(ςi = −1).

The Rademacher complexity, intuitively, measures how well the empirical
error can, when optimized over g ∈ C, match with random signs.

Lemma (Rademacher lemma)

Let C be a class of functions. Then

E sup
g∈C

∣∣∣L̂n(g)− L(g)
∣∣∣ ≤ 2ESRn(C) .
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Proof of Rademacher lemma

Proof.

The core idea of the proof is to introduce X ′1, . . . ,X
′
n and Y ′1, . . . ,Y

′
n , an

independent copy of X1, . . . ,Xn and Y1, . . . ,Yn, respectively (called ghost
sample), as well as ς = (ςi )

n
i=1 , an i.i.d. family of Rademacher variables

that are independent of the sample and the ghost sample. Then, denoting
L̂′n(g) := 1

n

∑n
i=1 I{g(X ′i ) 6=Y ′i } , we have ...
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Proof continued.

E sup
g∈C

∣∣∣L̂n(g)− L(g)
∣∣∣

= ES sup
g∈C

∣∣∣L̂n(g)− ES ′ L̂
′
n(g)

∣∣∣
≤ ESES ′ sup

g∈C

∣∣∣L̂n(g)− L̂′n(g)
∣∣∣

(because sup
i∈I
|EZi | ≤ E sup

i∈I
|Zi |)

= ESES ′Eς sup
g∈C

∣∣∣∣∣
n∑

i=1

ςi

(
I{g(X ′i )6=Y ′i } − I{g(X ′i )6=Y ′i }

)∣∣∣∣∣
(by the symmetry of the Rademacher variables)

≤ 2ES Eς sup
g∈C

∣∣∣∣1n
n∑

i=1

ςi I{g(Xi )6=Yi}

∣∣∣∣︸ ︷︷ ︸
=Rn(C)

.
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Step 2: relating Rn(C) with Sn(C)

Definition (VC shatter coefficient)

The VC shatter coefficient of a function class C is defined as

Sn(C) = max
xi∈Rd , yi∈R, i=1,...,n

∣∣∣∣{(I{g(X1)6=Y1} , . . . , I{g(Xn)6=Yn}
)

: g ∈ C
}∣∣∣∣ .

The shatter coefficient, how many different functions “effectively” are in
C, after being processed by the loss function.

Theorem (Vapnik-Chervonenkis inequality)

Let C be a class of functions. Then

Rn(C) ≤
√

2 log(2Sn(C))

n
.
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Proof of Vapnik-Chervonenkis inequality.

Think of the variables Xi ,Yi , i = 1, . . . , n as being fixed, i.e., Rn(C) only
randomly depending on ς1, . . . , ςn. Note that ςi I{g(Xi )6=Yi}, i = 1, . . . , n has
zero mean and ranges in [−1, 1]. Thus, by Höffding’s Lemma,
Eesςi I{g(Xi ) 6=Yi} ≤ es

2/2. Thus it follows

Ee
s
n

∑
i ςi I{g(Xi ) 6=Yi} =

n∏
i=1

Ee
s
n
ςi I{g(Xi ) 6=Yi} ≤

n∏
i=1

e
s2

2n2 = e
s2

2n ,

Hence, by the subsequent lemma,

Rn(C) ≤
√

2 log(2Sn(C))

n

because, for fixed Xi ,Yi , i = 1, . . . , n, the sup in the definition of Rn(C) is
effectively only over Sn(C) many values.

Lemma

If EesZi ≤ e
σ2s2

2 , then Emaxi=1,...,k |Zi | ≤ σ
√

2 log(2k) .
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Proof.

By Jensen’s inequality,

esEmaxi=1,...,n Zi
Jensen
≤ Ees maxi=1,...,n Zi = E max

i=1,...,n
esZi

≤
n∑

i=1

EesZi ≤ nes
2σ2/2 .

Thus, Emaxi=1,...,n Zi ≤ log(n)/s + sσ2/2, which is minimized for

s :=
√

2 log(n)/σ2. Resubstitution gives

E max
i=1,...,n

Zi ≤ σ
√

2 log(n) .

The result follows because

max
i=1,...,n

|Zi | = max(Z1,−Z1, . . . ,Zn,−Zn) .
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Step 3: Relating Sn(C) with the VC dimension V

For the Vapnik-Chervonenkis inequality to converge when n→∞, the
quantity log(Sn(C)) needs to decrease sublinearly in n. Thus we define:

Definition

The V-C dimension V is the smallest integer n such that Sn(C) = 2n.

Example

For any non-colinear set of points {x1, . . . , xn} ⊂ Rd and any choice of
labels y1, . . . , yn ∈ {0, 1}, there is an affine-linear function, separating the
two classes without any error, if and only if n = d + 1. Thus V = d + 1.

An interesting phase transition occurs for the VC shattering coefficient
Sn(C) when n > V .

Lemma (Sauer’s lemma)

For any n > V , Sn(C) ≤ (n + 1)V .
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Proof.

Fix the variables xi , yi , i = 1, . . . , n and consider the resulting table of
values

{(
I{g(x1)6=y1} , . . . , I{g(xn)6=yn}

)
: g ∈ C

}
. E.g., for n = 5, this could

look as follows:

T :=

x1 x2 x3 x4 x5
g1 0 1 0 1 1
g2 1 0 0 1 1
g3 1 1 1 0 1
g4 0 1 1 0 0
g5 0 0 0 1 0

Each row corresponds to one possible evaluation of a function in C on the
sample, and the cardinality∣∣{(I{g(x1)6=y1} , . . . , I{g(xn)6=yn}

)
: g ∈ C

}∣∣
equals the number of rows.
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Proof continued.

We translate the table by shifting, for each i = 1, . . . , n, column i , that is,
for each row, we replace a 1 in column i by a 0, unless this would produce
a row that is already contained in the table.
After applying the shifting operation in order from x1 to xn, we get the
following table, which contains mostly 0s.

T ∗ :=

x1 x2 x3 x4 x5
g1 0 1 0 0 0
g2 0 0 0 1 1
g3 0 0 0 0 1
g4 0 0 0 0 0
g5 0 0 0 0 0

From the example, we can make the following observations:

1 The size of the table is unchanged because the rows are still distinct.

2 The shifted table T ∗ exhibits the is closed below, i.e., replacing any
of the 1s in the table would produce a duplicate row in the table.
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Proof continued.

Furthermore, the VC dimension of the original table T is at least as high
as the one of the shifted table T ∗, i.e., VC(T ) ≥ VC(T ∗). To see this,
consider a subset of columns that is shattered in T ∗; the same subset
must also be shattered in T .
We conclude that T ∗ cannot have more than V 1s in a row and thus has
≤
∑n

i=0

(n
i

)
rows (imagine assigning, for each i = 0, . . . ,V , i many 1s to

the positions 1, . . . , n) and the same holds for T .
Moreover, by the binomial theorem,

V∑
i=0

(
n

i

)
=

V∑
i=0

n!

((n − i)!i !
≤

n∑
i=0

ni

i !

≤
V∑
i=0

niV !

i !(V − i)!
=

V∑
i=0

n

(
V

i

)
Bin.
= (n + 1)V

Marius Kloft and Klaus-Robert Müller (TU Berlin) Statistical Learning Theory October 23, 2012 30 / 33



Conclusion
Putting things together, we obtain the following bound:

Corollary

With probability 1− δ,

sup
g∈C

∣∣∣L̂(g)− L(g)
∣∣∣ ≤ √

log(1/δ)

2n
+ 2

√
2(V log(n + 1) + log 2)

n

Proof.

The result is obtained by setting ε :=
√

log(2/δ)
2n .

Corollary

The estimation error of ERM with linear functions in Rd , is, with
probability 1− δ, bounded by

L(g∗n )− L(g∗) ≤ 2

√
log(1/δ)

2n
+ 4

√
2(d + 1) log(n + 1) + 2 log 2)

n
.
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Interpretation

Going back to the slide from the beginning,

L(g∗n )− L(g∗) = L(g∗n )− L(g∗C )︸ ︷︷ ︸
“estimation error”

+ L(g∗C )− L(g∗)︸ ︷︷ ︸
“approximation error”

.

Estimation error: controllable; we just have shown we will prove:
converges to zero at a rate of O(

√
V /n), where V is the VC dimension.

Approximation error: not controllable; may converge arbitrarily slowly
when n→∞.

However, when increasing the size of the class, the approximation error
may shrink. On the other hand, VC dimension may increase in this case,
thus the estimation error decreases.

Bottom line: regarding the choice of the class C, there is tradeoff
between estimation and approximation error.
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