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Introduction to Statistical Learning Theory

Outline:
@ Problem setting and terminology

o Concentration Inequalities
@ Vapnik-Chervonenkis theory
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Problem setting

The goal in statistical learning theory is to find a classifier
g :RY — {0, 1}, predicting the correct class y of an observation x € RY,
based on data (x1,y1), .-, (Xn, ¥n)-

Because we cannot learn a reasonable classifier, if no assumption is
imposed on the relationship between the data and the test observation
(x,y), we require:

Assumption

Let the data D, := (x;, y;)?_; and test observation (x,y) be independently
drawn from one and the same probability distribution IP.

Notation: we denote the random variables associated to (x;, y;) and (x, y)
by capital letters, i.e., (Xj, Yi) and (X, Y), respectively.
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Bayes classifier

A classifier errs if g(X) # Y so that L(g) :=P(g(X) # Y|D,) is the
probability of error of g.

The Bayes classifier, defined as

) e e oy [ L R =1X =x) > 1
g'(x) = argmin L(g) = { 0, otherwise, @

is, by definition, the most accurate classifier in average. If P is known,
the Bayes classifier may be computed.

However, most often P is unknown in practice and needs to be
approximated on base of the data:

~

1 n

L(g) = =X Ieoorvy ~ L)
ni:l e

error probability

empirical error
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Empirical Risk Minimization (ERM)

The Bayes classifier is thus roughly approximated by:

Empirical risk minimization (ERM)

g* = argmin L,(g)
geC

In comparison to the Bayes classifier, ERM has two limitations

Q the empirical error L(g) is minimized, rather than the error probability
L(g)

@ the minimization is over a sub-class C of classifiers, to avoid
overfitting.
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What is “lost” by the ERM approximation?

The sub-optimality of ERM is measured by L(gy) — L(g*), i.e., the
differences of the error probabilities of ERM and the Bayes classifier. We
thus need to analyze L(gy) — L(g").

To this end, denote the most accurate classifier in the class C by
g; = argmingcc L(g). Clearly, we may write:

L(gy) —L(g") = L(g,)—Llge) +  Llg)—L(g")
—_ —_
called “estimation error” called “approximation error”

Approximation error: not controllable; may converge arbitrarily slowly
when n — oo.

Estimation error: controllable; we will prove: converges to zero at a rate

of O(+/1/n).
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Bounding the estimation error

Lemma
L(gy) — L(g?) < 2sup Lo(g) - L(g)| -
N———— €
estimation error €
Proof.
L(gs) — L(g2)
= Lgy) — Lolen) + (Lalgy) ~t(a))
NG
<L(gZ)
< 2sup|la(g) - L(g)‘ :
geC
DJ
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Consequences of the Lemma

The above lemma states that upper bounds on sup,c¢ ILn(g) — L(g)|
automatically provide us with upper bounds on the sub-optimality of the
ERM classifier gy within C, that is, a bound for the estimation error
L(gy) — L(gz). This explains why...

The classical task in statistical learning theory is

~

L.(g) - L(g)‘, ie.,

Li(g) - L(g)| < bound(n)

to derive upper bounds on supgc¢

sup
gecC
with bound(n) — 0 when n — oo at a reasonable speed (usually

O(/1/m).

v

Warning: pointwise convergence, i.e., Vg € C : |L,(g) — L(g)| — 0 when

n — oo is not enough! We need that |L,(g) — L(g)| convergences
uniformly in C.
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What is coming up?
We bound P(sup,cc IL,(g) — L(g)| > t) in two steps:
© showing that supg¢c IL,(g) — L(g)| is “concentrated”, i.e., it is,

with high probability over the draw of the data, very close to its mean
Esupgec |Ln(g) — L(g) (by “MCDIARMID’S INEQUALITY”)

© showing that Esup,c¢ 1L,(g) — L(g)| = 0 when n — o at rate
O(\/1/n) (by “VAPNIK-CHERVONENKIS THEORY”)

This is justified by the following decompaosition:

sup |Ln(g) — L(g)| <
geC

sup |Ln(g) — L(g)| — Esup|Ln(g) — L(g)|| +Esup|La(g) — L(g)|
geC geC geC

-~

< bound (STEP 1) < bound (STEP 2)
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QOutline

To reach step 1, we will introduce the theory of concentration

inequalities, i.e., inequalities of the form: for a random variable Z and
any real number t > 0,

P(|Z — EZ| > t) < bound(t, n).

To this end, we will step by step prove:
@ Markov's inequality

@ Chernoff’s inequality

at the very end, reaching the very powerful concentration inequality of
McDiarmid (1989), which gives the required result of step 1.
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Markov’s inequality

The starting point of all concentration inequalities is the following simple,
yet very useful result:

Proposition (MARKOV’S INEQUALITY)

For any positive random variable Z and any real number t > 0,

]P’(Zzt)gg.

Proof.

The core idea of the proof is to consider the random variable
Zy = t]I{ZZt}. Note that Z; is positive and it holds Z; < Z with
probability one as well as, per construction, EZ; = tEl 7~y = tP(Z > t).

Thus it follows

EZ EZ
BZ2t)=—<—

which was to show. ]

)

v
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From Markov’s inequality, we easily prove:

Proposition (CHERNOFF’S INEQUALITY)
For any random variable Z and any t > 0,

P(Z > t) < min Mz(s)

seR  est ’

where Mz(s) = Ee? is the moment-generating function of Z.

Proof.

Note that by Markov's inequality P(Z > t) = P(e%? > e%t) < £€ which

est 1

was to show.

O]

v
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Discussion (Chernoff’s inequality)

The moment-generating function (MGF) occurring in Chernoff’s
inequality is, for many distributions, well known from the literature; e.g.:

Example (MGF OF GAUSSIAN RANDOM VARIABLES)

The MGF of a Gaussian random variable Z with expected value E(Z) =0
and variance o2 is given by: for any s € R,

1.2

Mz(s) = e27".

v

Most relevant for us (because 0 < L,(g), L(g) < 1) are bounded variables:

Lemma (HOFFDING’S LEMMA. For the proof, see lecture notes
p

A random variable Z is bounded, if there exist constants a, b > 0 such
that P(a < Z < b) = 1. The MGF of a bounded random variable Z with
expected value E(Z) = 0 is upper bounded by: for any s € R,

Mz(S) < esz(b—a)2/8‘

v
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McDiarmid’s inquality

We are now ready to prove the main concentration inequality of this
lecture.

Assumption (BOUNDED DIFFERENCE ASSUMPTION)

Let A be some set; a function f : A" — R satisfies the bounded difference

assumption, if there exist real numbers ci, . ..,c, > 0 so that for all
i=1,...,n,
sup  |f(z1,---,2n) — f(z1,-- -, 2i21,2), Zix1, -5 Zn)| < i -

z1,...,2n,2] €A

In words, if we change the ith variable while keeping all the others fixed,
the value of the functionv g does not change by more than c;.

Theorem (MCDIARMID’S INEQUALITY)
Under the bounded difference assumption, it holds, for all t > 0,

P(|f(Zy,...,2Z,) —Ef(Zi,...,2Z,)| > t) < 2e7 2/ Zla
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Proof (McDiarmid’s inequality)

Proof.

Write f = f(Z1,...,2Z,), V:i=f —Ef, and V =>"7_, V; with
V= E[f|Zl, cey Z,'] = E[f|21, ce Z,'_l], where E[f|21, R Z,'] denotes
the expected value conditioned on Zi, ..., Z;.

Changing the value of Z; can, by the bounded difference assumption,
change the value of V; by at most ¢;. Moreover E[V;|Z1,...,Zi_1] = 0.
Thus, by Hoffding's lemma,

E[eVi|Z4, ..., Zi1] < 78, (2)
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Proof continued.
Hence, by Chernoff’s inequality,

P(f —Ef > t)
< mine tEeS(EN) — min e StReS 2im1 Vi
seR seR
= mine EE[eX=Vi|Zy, ..., Z, 1]
seR
n—1,,
= mine TEE[e’ it ViE[eVr|Zy,. .., Zp1l| 24, - .., Zn-i]
seR
() . s2c?/8—st 52"71 V;
< mine® S EE[e® &=t YiI|Zy,..., Zn_1]
seR
< (REPEATING THE ARGUMENT (n — 1) TIMES)
= en52 S, c?/8—st )

seR
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Proof continued.
ens’ X1 6/8=st is minimized for s := 4t/ >, ¢?, thus giving

P(f —Ef > t) < e 2/ Z S

Analogously, repeating the argument for the function —f, we obtain the
corresponding left-sided inequality

P(f — Ef < —t) = P(—f — E(—f) > t) < e 28/ X<,

Combining both results gives the claimed result. [
v
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Consequences for Learning Theory

Corollary

Let C be a class of functions. Then, for any t > 0,

A(
Proof.

Put Z; == (X;, ;). i €N, and f(Zi,...,Z,) == supgec |Ln(g) — L(g)].
Then f satisfies the bounded difference assumption with ¢; = 1/n for all

n € N. The claimed inequality thus follows from McDiarmid's

inequality. [

sup |zn(g) - L(g)\ — Esup |Zn(g) — L(g)" > t) < 2e—2nt2‘
geC geC

v
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The big picture

Recall from the beginning of this lecture that our overall goal is to bound
the estimation error of ERM and that it holds

~

L(gy) — L(gz) < 2sup|La(g)—L(g)| -
S gec
estimation error

By the corollary from the previous slide, with probability 2e_2”€2,

Ln(g) - L(g)

sup
geC

[sup|La(g) — L(g)| ~ Esup|La(g) — L(g)l| +Esup|La(g) — L(g),
geC geC geC

J/

< € (BY McDIARMID) still left to bound!

We will bound the expected value [Esupgc¢ \L,(g) — L(g)| using
Vapnik-Chervonenkis theory.
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Vapnik-Chervonenkis Theory

~

To bound the expected value Esupgcc |Ln(g) — L(g)| we proceed in three

steps:

@ relating Esup,cc |La(g) — L(g)‘ with 93,(C), the so-called
Rademacher complexity of the class C

relating R,(C) with the so-called VC shattering coefficient S,(C)
relating S,(C) with the VC dimension V

computing V for specific classes C.
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Step 1: relating E sup,.. ’Zn(g) — L(g)’ with 2R,(C)
Definition (RADEMACHER COMPLEXITY )

The (empirical) Rademacher complexity of a function class C is defined as

Rn(C) := Ecsup
geC

)

1 n
=D sillg(x)2 v,y
i=1

where ¢ = (gj)i=1,....nis an i.i.d. family of Rademacher variables, i.e.,
]P)(C,' = +1) = P((,' = —1).

The Rademacher complexity, intuitively, measures how well the empirical
error can, when optimized over g € C, match with random signs.

Lemma (RADEMACHER LEMMA )

Let C be a class of functions. Then

~

Esup|La(g) — L(g)| < 2EsRa(C).

geC
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Proof of Rademacher lemma

Proof.

The core idea of the proof is to introduce Xj,..., X}, and Y{,..., Y},
independent copy of Xi,...,X, and Y1,..., Y, respectlvely (caIIed ghost
sample), as well as ¢ = (s;)7_; , an i.i.d. family of Rademacher variables

that are independent of the sample and the ghost sample. Then, denoting
L(g) = %27:1 Lig(xty2vry  we have ... J
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Proof continued.

~

E sup
gel

IN

INA
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Ln(g) - L(g)‘

Essup |L,(g) — Es z'n(g)’
geC

Ln(g) - Z’n(g)’

(because sup |[EZ;| < Esup|Zj|)
iel iel

ESESI sup
geC

n

> (H{g(xz)¢n'} - H{g(X,-’#Y,-’}>

i=1

EsEs/E¢ sup
geC
(by the symmetry of the Rademacher variables)

1 n
2Es B sup “ > silig(x)2v)
gec | N

=R,(C)

O]
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Step 2: relating %, (C) with S,(C)
Definition (VC SHATTER COEFFICIENT)
The VC shatter coefficient of a function class C is defined as

Sn(C) = max

xERY, R, i=1,...,n {(H{g(xl)#yl}’ o Lga)Avy) T8 € C}‘ '

The shatter coefficient, how many different functions “effectively” are in
C, after being processed by the loss function.

Theorem (VAPNIK-CHERVONENKIS INEQUALITY)

Let C be a class of functions. Then

%(QSHMAS"(C))-
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Proof of Vapnik-Chervonenkis inequality.

Think of the variables X;, Y;,i = 1,...,n as being fixed, i.e., ’,(C) only
randomly depending on <1, ..., 5. Note that ¢ilig(x)2v;}, i =1,...,n has
zero mean and ranges in [—1,1]. Thus, by Hoffding's Lemma,

Ee* s} < e5*/2. Thus it follows

[N

n n 2
Eer i Siligx)#vy — HEe%@H{g(X,-)#Y,-} < H ex? = en
— —

Hence, by the subsequent lemma,

210g(254(C))

Rn(C) <

() <4/ 282
because, for fixed X;, Y;, i =1,...,n, the sup in the definition of R,(C) is
effectively only over S,(C) many values. O
Lemma

0'252
IfEes4i < e 2, then Emaxj—1,  «|Zi| < o+/2log(2k).
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Proof.

By Jensen's inequality,

JENSEN
eSEmaxi=1, . nZi < EesMaXi=1,...nZi — & max e%%

i=1,...,n
n
<§ ]EesZ,' < ,.’6520'2/2
i=1

Thus, Emaxj—1,.,Z; < log(n)/s+ sa2/2, which is minimized for

s := y/2log(n)/c?. Resubstitution gives
E max Z < o+4/2log(n).

i=1,.

The result follows because

r’rlwax |Zi| = max(Z,—-2Z1,...,2Zn,—2p).
I_ 7

D y
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Step 3: Relating S,(C) with the VC dimension V

For the Vapnik-Chervonenkis inequality to converge when n — oo, the
quantity log(S,(C)) needs to decrease sublinearly in n. Thus we define:

Definition
The V-C dimension V is the smallest integer n such that S,(C) = 2".

Example
For any non-colinear set of points {xi,...,x,} C R and any choice of
labels yi,...,yn € {0,1}, there is an affine-linear function, separating the

two classes without any error, if and only if n=d + 1. Thus V =d + 1.

An interesting phase transition occurs for the VC shattering coefficient
Sn(C) when n > V.

Lemma (SAUER’'S LEMMA)
For any n >V, S,(C) < (n+1)V. J
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Proof.

Fix the variables x;, y;,i = 1,..., n and consider the resulting table of
values {(]I{g(x1)7éy1}7 aoo g H{g(xn);éyn}) 18 € C} E.g., for n =5, this could
look as follows:
X1 X2 X3 X4 X5
g |0 11011
;o |&|1]of0o]1]1L
el 1]1]1]0]1
@lol1l1]lo0]o
gs|o|ojol1]o0

Each row corresponds to one possible evaluation of a function in C on the
sample, and the cardinality

H{ Tgeaytny s - » Lglan)yny) : & € C}|

equals the number of rows. [

v
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Proof continued.

We translate the table by shifting, for each i =1,...,n, column /, that is,
for each row, we replace a 1 in column / by a 0, unless this would produce
a row that is already contained in the table.

After applying the shifting operation in order from x; to x,, we get the
following table, which contains mostly Os.

X1 X2 X3 X4 X5

g | 0| 1]0]0]o0O

e |&@ 000 |1 1
| 0]0o]o]o]1

g | 0|l0[0]|0]oO

g | 0[0|0]|0|O

From the example, we can make the following observations:
© The size of the table is unchanged because the rows are still distinct.

@ The shifted table T* exhibits the is closed below, i.e., replacing any
of the 1s in the table would produce a duplicate row in the table.

[]
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Proof continued.

Furthermore, the VC dimension of the original table T is at least as high
as the one of the shifted table T%, i.e., VC(T) > VC(T*). To see this,
consider a subset of columns that is shattered in T*; the same subset

must also be shattered in T.

We conclude that T* cannot have more than V 1s in a row and thus has
< Z?:o (7) rows (imagine assigning, for each i =0,...,V, i many 1s to
the positions 1,...,n) and the same holds for T.

Moreover, by the binomial theorem,

2.() - S < B

i=0 i

. v LA B
< D Ao - Z”<i) = ()Y

i=0
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Conclusion
Putting things together, we obtain the following bound:

Corollary

With probability 1 —

foy Iog(1/5 2(Vlog(n+1 + log2)
sup L(g) L(g <\ 5 \/

Proof.
The result is obtained by setting e := 1/ '°&2/%) 0
Corollary
The estimation error of ERM with linear functions in RY, is, with
probability 1 — &, bounded by
Iog(l/(5 2(d + 1) log( n+1)+2|og2)
L(gn) = L(g") < 24/ ———
Marius Kloft and Klaus-Robert Miiller (TU E Statistical Learning Theory October 23, 2012 31/33




Interpretation

Going back to the slide from the beginning,

L(gs) — L(g") = L(g,)—L(ge) + L(s)— L(g")

estimation error approximation error

Estimation error: controllable; we just have shown we will prove:
converges to zero at a rate of O(y/V/n), where V is the VC dimension.

Approximation error: not controllable; may converge arbitrarily slowly
when n — oo.

However, when increasing the size of the class, the approximation error
may shrink. On the other hand, VC dimension may increase in this case,
thus the estimation error decreases.

Bottom line: regarding the choice of the class C, there is tradeoff
between estimation and approximation error.
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